{"title":"作为小林等距线作用于测地线族的全态映射","authors":"Filippo Bracci, Łukasz Kosiński, Włodzimierz Zwonek","doi":"10.1007/s00209-024-03569-7","DOIUrl":null,"url":null,"abstract":"<p>Consider a holomorphic map <span>\\(F: D \\rightarrow G\\)</span> between two domains in <span>\\({{\\mathbb {C}}}^N\\)</span>. Let <span>\\({\\mathscr {F}}\\)</span> denote a family of geodesics for the Kobayashi distance, such that <i>F</i> acts as an isometry on each element of <span>\\({\\mathscr {F}}\\)</span>. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that <i>F</i> is a biholomorphism. Specifically, we establish this when <i>D</i> is a complete hyperbolic domain, and <span>\\({\\mathscr {F}}\\)</span> comprises all geodesic segments originating from a specific point. Another case is when <i>D</i> and <i>G</i> are <span>\\(C^{2+\\alpha }\\)</span>-smooth bounded pseudoconvex domains, and <span>\\({\\mathscr {F}}\\)</span> consists of all geodesic rays converging at a designated boundary point of <i>D</i>. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Holomorphic maps acting as Kobayashi isometries on a family of geodesics\",\"authors\":\"Filippo Bracci, Łukasz Kosiński, Włodzimierz Zwonek\",\"doi\":\"10.1007/s00209-024-03569-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a holomorphic map <span>\\\\(F: D \\\\rightarrow G\\\\)</span> between two domains in <span>\\\\({{\\\\mathbb {C}}}^N\\\\)</span>. Let <span>\\\\({\\\\mathscr {F}}\\\\)</span> denote a family of geodesics for the Kobayashi distance, such that <i>F</i> acts as an isometry on each element of <span>\\\\({\\\\mathscr {F}}\\\\)</span>. This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that <i>F</i> is a biholomorphism. Specifically, we establish this when <i>D</i> is a complete hyperbolic domain, and <span>\\\\({\\\\mathscr {F}}\\\\)</span> comprises all geodesic segments originating from a specific point. Another case is when <i>D</i> and <i>G</i> are <span>\\\\(C^{2+\\\\alpha }\\\\)</span>-smooth bounded pseudoconvex domains, and <span>\\\\({\\\\mathscr {F}}\\\\)</span> consists of all geodesic rays converging at a designated boundary point of <i>D</i>. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03569-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03569-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
考虑在 \({{\mathbb {C}}^N\) 中的两个域之间有一个全形映射(F: D \rightarrow G\ )。让 \({\mathscr {F}}\ 表示小林距离的测地线族,使得 F 在 \({\mathscr {F}}\) 的每个元素上都是等距的。)本文致力于描述上述条件意味着 F 是双holomorphism 的情形。具体地说,当 D 是一个完整的双曲域,且 \({\mathscr {F}}\) 包含了从一个特定点出发的所有大地线段时,我们就可以确定这一点。另一种情况是当 D 和 G 是 \(C^{2+\alpha }\)-smooth bounded pseudoconvex domains 时,并且 \({\mathscr {F}}\) 由汇聚到 D 的指定边界点的所有大地射线组成。此外,我们还提供了一些例子来证明这些假设本质上是最优的。
Holomorphic maps acting as Kobayashi isometries on a family of geodesics
Consider a holomorphic map \(F: D \rightarrow G\) between two domains in \({{\mathbb {C}}}^N\). Let \({\mathscr {F}}\) denote a family of geodesics for the Kobayashi distance, such that F acts as an isometry on each element of \({\mathscr {F}}\). This paper is dedicated to characterizing the scenarios in which the aforementioned condition implies that F is a biholomorphism. Specifically, we establish this when D is a complete hyperbolic domain, and \({\mathscr {F}}\) comprises all geodesic segments originating from a specific point. Another case is when D and G are \(C^{2+\alpha }\)-smooth bounded pseudoconvex domains, and \({\mathscr {F}}\) consists of all geodesic rays converging at a designated boundary point of D. Furthermore, we provide examples to demonstrate that these assumptions are essentially optimal.