循环边缘图上 NLS 方程的稳定性理论

IF 1 3区 数学 Q1 MATHEMATICS
Jaime Angulo Pava
{"title":"循环边缘图上 NLS 方程的稳定性理论","authors":"Jaime Angulo Pava","doi":"10.1007/s00209-024-03565-x","DOIUrl":null,"url":null,"abstract":"<p>The aim of this work is to present new spectral tools for studying the orbital stability of standing waves solutions for the nonlinear Schrödinger equation (NLS) with power nonlinearity on looping edge graphs, namely, a graph consisting of a circle with several half-lines attached at a single vertex. The main novelty of this paper is at least twofold: by considering <span>\\(\\delta \\)</span>-type boundary conditions at the vertex, the extension theory of Krein &amp;von Neumann, and a splitting eigenvalue method, we identify the Morse index and the nullity index of a specific linearized operator around of <i>a priori</i> positive single-lobe state profile for every positive power, this information will be main for a local stability study; and so via a bifurcation analysis on the phase plane we build at least two families of positive single-lobe states and we study the stability properties of these in the subcritical, critical, and supercritical cases. Our results recover some spectral studies in the literature associated to the NLS on looping edge graphs which were obtained via variational techniques.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability theory for the NLS equation on looping edge graphs\",\"authors\":\"Jaime Angulo Pava\",\"doi\":\"10.1007/s00209-024-03565-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this work is to present new spectral tools for studying the orbital stability of standing waves solutions for the nonlinear Schrödinger equation (NLS) with power nonlinearity on looping edge graphs, namely, a graph consisting of a circle with several half-lines attached at a single vertex. The main novelty of this paper is at least twofold: by considering <span>\\\\(\\\\delta \\\\)</span>-type boundary conditions at the vertex, the extension theory of Krein &amp;von Neumann, and a splitting eigenvalue method, we identify the Morse index and the nullity index of a specific linearized operator around of <i>a priori</i> positive single-lobe state profile for every positive power, this information will be main for a local stability study; and so via a bifurcation analysis on the phase plane we build at least two families of positive single-lobe states and we study the stability properties of these in the subcritical, critical, and supercritical cases. Our results recover some spectral studies in the literature associated to the NLS on looping edge graphs which were obtained via variational techniques.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03565-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03565-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是提出新的光谱工具,用于研究具有幂非线性的非线性薛定谔方程(NLS)驻波解在循环边缘图上的轨道稳定性,循环边缘图是指由一个圆和在单个顶点连接的多条半线组成的图。本文的主要新颖之处至少有两点:通过考虑顶点处的\(\delta \)型边界条件、Krein &von Neumann 的扩展理论以及分裂特征值方法,我们确定了围绕先验正单循环状态轮廓的特定线性化算子的每个正幂次的莫尔斯指数和无效指数,这些信息对于局部稳定性研究至关重要;因此,通过相平面上的分岔分析,我们建立了至少两个正单叶状态族,并研究了这些状态在次临界、临界和超临界情况下的稳定性特性。我们的结果恢复了文献中与循环边缘图上的 NLS 相关的光谱研究,这些研究是通过变分技术获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Stability theory for the NLS equation on looping edge graphs

Stability theory for the NLS equation on looping edge graphs

The aim of this work is to present new spectral tools for studying the orbital stability of standing waves solutions for the nonlinear Schrödinger equation (NLS) with power nonlinearity on looping edge graphs, namely, a graph consisting of a circle with several half-lines attached at a single vertex. The main novelty of this paper is at least twofold: by considering \(\delta \)-type boundary conditions at the vertex, the extension theory of Krein &von Neumann, and a splitting eigenvalue method, we identify the Morse index and the nullity index of a specific linearized operator around of a priori positive single-lobe state profile for every positive power, this information will be main for a local stability study; and so via a bifurcation analysis on the phase plane we build at least two families of positive single-lobe states and we study the stability properties of these in the subcritical, critical, and supercritical cases. Our results recover some spectral studies in the literature associated to the NLS on looping edge graphs which were obtained via variational techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信