{"title":"基于多传感器集成的智能车辆高清矢量地图构建:系统和误差量化","authors":"Runzhi Hu, Shiyu Bai, Weisong Wen, Xin Xia, Li-Ta Hsu","doi":"10.1049/itr2.12524","DOIUrl":null,"url":null,"abstract":"<p>A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12524","citationCount":"0","resultStr":"{\"title\":\"Towards high-definition vector map construction based on multi-sensor integration for intelligent vehicles: Systems and error quantification\",\"authors\":\"Runzhi Hu, Shiyu Bai, Weisong Wen, Xin Xia, Li-Ta Hsu\",\"doi\":\"10.1049/itr2.12524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12524\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12524\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Towards high-definition vector map construction based on multi-sensor integration for intelligent vehicles: Systems and error quantification
A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf