基于多传感器集成的智能车辆高清矢量地图构建:系统和误差量化

IF 2.3 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Runzhi Hu, Shiyu Bai, Weisong Wen, Xin Xia, Li-Ta Hsu
{"title":"基于多传感器集成的智能车辆高清矢量地图构建:系统和误差量化","authors":"Runzhi Hu,&nbsp;Shiyu Bai,&nbsp;Weisong Wen,&nbsp;Xin Xia,&nbsp;Li-Ta Hsu","doi":"10.1049/itr2.12524","DOIUrl":null,"url":null,"abstract":"<p>A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12524","citationCount":"0","resultStr":"{\"title\":\"Towards high-definition vector map construction based on multi-sensor integration for intelligent vehicles: Systems and error quantification\",\"authors\":\"Runzhi Hu,&nbsp;Shiyu Bai,&nbsp;Weisong Wen,&nbsp;Xin Xia,&nbsp;Li-Ta Hsu\",\"doi\":\"10.1049/itr2.12524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12524\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12524\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

轻量级高清矢量地图(HDVM)可实现车辆完全自动驾驶。然而,HDVM 的生成仍然是一个具有挑战性的问题,尤其是在复杂的城市场景中。此外,城市环境中的许多因素都会降低 HDVM 的准确性,因此需要可靠的误差量化。为了应对这些挑战,本文提出了一个开源的通用 HDVM 生成管道,该管道集成了全球导航卫星系统 (GNSS)、惯性导航系统 (INS)、光探测和测距 (LiDAR) 以及摄像头。该管道首先使用 Swin 变换器从原始图像中提取语义信息。然后,利用 3D LiDAR 的深度和 GNSS/INS 集成导航系统的姿态估计,检索语义对象的绝对 3D 信息。从语义信息中提取矢量信息(VI),如车道线,以构建 HDVM。为了评估 HDVM 的潜在误差,本文系统地量化了两个关键误差源(分割误差和激光雷达-相机外在参数误差)的影响。首先形成了一个误差传播方案,以说明这些误差如何从根本上影响 HDVM 的精度。我们在 https://github.com/ebhrz/HDMap 网站上提供的代码证明了所建议管道的有效性。我们使用典型的数据集(包括室内车库和复杂的城市场景)对其性能进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Towards high-definition vector map construction based on multi-sensor integration for intelligent vehicles: Systems and error quantification

Towards high-definition vector map construction based on multi-sensor integration for intelligent vehicles: Systems and error quantification

A lightweight, high-definition vector map (HDVM) enables fully autonomous vehicles. However, the generation of HDVM remains a challenging problem, especially in complex urban scenarios. Moreover, numerous factors in the urban environment can degrade the accuracy of HDVM, necessitating a reliable error quantification. To address these challenges, this paper presents an open-source and generic HDVM generation pipeline that integrates the global navigation satellite system (GNSS), inertial navigation system (INS), light detection and ranging (LiDAR), and camera. The pipeline begins by extracting semantic information from raw images using the Swin Transformer. The absolute 3D information of semantic objects is then retrieved using depth from the 3D LiDAR, and pose estimation from GNSS/INS integrated navigation system. Vector information (VI), such as lane lines, is extracted from the semantic information to construct the HDVM. To assess the potential error of the HDVM, this paper systematically quantifies the impacts of two key error sources, segmentation and LiDAR-camera extrinsic parameter error. An error propagation scheme is first formed to illustrate how these errors fundamentally influence the accuracy of the HDVM. The effectiveness of the proposed pipeline is demonstrated through our codeavailable at https://github.com/ebhrz/HDMap. The performance is verified using typical datasets, including indoor garages and complex urban scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Intelligent Transport Systems
IET Intelligent Transport Systems 工程技术-运输科技
CiteScore
6.50
自引率
7.40%
发文量
159
审稿时长
3 months
期刊介绍: IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following: Sustainable traffic solutions Deployments with enabling technologies Pervasive monitoring Applications; demonstrations and evaluation Economic and behavioural analyses of ITS services and scenario Data Integration and analytics Information collection and processing; image processing applications in ITS ITS aspects of electric vehicles Autonomous vehicles; connected vehicle systems; In-vehicle ITS, safety and vulnerable road user aspects Mobility as a service systems Traffic management and control Public transport systems technologies Fleet and public transport logistics Emergency and incident management Demand management and electronic payment systems Traffic related air pollution management Policy and institutional issues Interoperability, standards and architectures Funding scenarios Enforcement Human machine interaction Education, training and outreach Current Special Issue Call for papers: Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信