Mohamad Alansari, Ameena Saad Al-Sumaiti, Ahmed Abughali
{"title":"利用深度学习优化电动汽车充电基础设施的布局","authors":"Mohamad Alansari, Ameena Saad Al-Sumaiti, Ahmed Abughali","doi":"10.1049/itr2.12527","DOIUrl":null,"url":null,"abstract":"<p>The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass-market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time-series statistical characteristics, and the deep learning Attention-based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time-series data. The model's effectiveness was validated through comparative analyses against state-of-the-art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).</p>","PeriodicalId":50381,"journal":{"name":"IET Intelligent Transport Systems","volume":"18 8","pages":"1529-1544"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12527","citationCount":"0","resultStr":"{\"title\":\"Optimal placement of electric vehicle charging infrastructures utilizing deep learning\",\"authors\":\"Mohamad Alansari, Ameena Saad Al-Sumaiti, Ahmed Abughali\",\"doi\":\"10.1049/itr2.12527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass-market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time-series statistical characteristics, and the deep learning Attention-based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time-series data. The model's effectiveness was validated through comparative analyses against state-of-the-art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).</p>\",\"PeriodicalId\":50381,\"journal\":{\"name\":\"IET Intelligent Transport Systems\",\"volume\":\"18 8\",\"pages\":\"1529-1544\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/itr2.12527\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Intelligent Transport Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12527\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Intelligent Transport Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/itr2.12527","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Optimal placement of electric vehicle charging infrastructures utilizing deep learning
The increasing level of air pollution caused by the transport sector necessitates countries to adopt Electric Vehicles (EVs). To espouse EVs, the charging infrastructures' location should be optimal to fulfill the mass-market consumer needs and reduce the governmental expenses. In this work, the placement of two categories of charging infrastructures, specifically Charging Station (CS) and Dynamic Wireless Charging (DWC) infrastructure is planned in Dubai, United Arab Emirates (UAE) as a case study. For this study, Dubai is divided into 14 districts as per its new addressing system, and the allocation of the two types of charging infrastructures is based on the projection of population growth, EVs adoption forecasting, and other factors with the objective of meeting the consumers' needs and minimizing the government's expenditure. The proposal introduces a novel hybrid model for forecasting, integrating the strengths of the Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors (SARIMAX) model for capturing time-series statistical characteristics, and the deep learning Attention-based Convolutional Neural Network (ACNN) for modeling nonlinear relationships in time-series data. The model's effectiveness was validated through comparative analyses against state-of-the-art (SOTA) models on standard benchmarks, showing significant improvements: 29.70% reduction in Mean Absolute Error (MAE), and 19.15% reduction in Root Mean Square Error (RMSE).
期刊介绍:
IET Intelligent Transport Systems is an interdisciplinary journal devoted to research into the practical applications of ITS and infrastructures. The scope of the journal includes the following:
Sustainable traffic solutions
Deployments with enabling technologies
Pervasive monitoring
Applications; demonstrations and evaluation
Economic and behavioural analyses of ITS services and scenario
Data Integration and analytics
Information collection and processing; image processing applications in ITS
ITS aspects of electric vehicles
Autonomous vehicles; connected vehicle systems;
In-vehicle ITS, safety and vulnerable road user aspects
Mobility as a service systems
Traffic management and control
Public transport systems technologies
Fleet and public transport logistics
Emergency and incident management
Demand management and electronic payment systems
Traffic related air pollution management
Policy and institutional issues
Interoperability, standards and architectures
Funding scenarios
Enforcement
Human machine interaction
Education, training and outreach
Current Special Issue Call for papers:
Intelligent Transportation Systems in Smart Cities for Sustainable Environment - https://digital-library.theiet.org/files/IET_ITS_CFP_ITSSCSE.pdf
Sustainably Intelligent Mobility (SIM) - https://digital-library.theiet.org/files/IET_ITS_CFP_SIM.pdf
Traffic Theory and Modelling in the Era of Artificial Intelligence and Big Data (in collaboration with World Congress for Transport Research, WCTR 2019) - https://digital-library.theiet.org/files/IET_ITS_CFP_WCTR.pdf