Maximilian P. Reitze, Christian Renggli, Andreas Morlok, Iris Weber, Uta Rodehorst, Jasper Berndt, Stephan Klemme, Harald Hiesinger
{"title":"CaS-MgS 固溶体的晶体学和中红外光谱特性","authors":"Maximilian P. Reitze, Christian Renggli, Andreas Morlok, Iris Weber, Uta Rodehorst, Jasper Berndt, Stephan Klemme, Harald Hiesinger","doi":"10.1029/2024JE008483","DOIUrl":null,"url":null,"abstract":"<p>We synthesized the solid solution between the sulfides CaS (oldhamite) and MgS (niningerite). Electron microprobe and X-ray diffraction showed homogeneous and pure samples after the synthesis. The calculated lattice parameters fit to earlier literature data. Mid-infrared spectroscopy of the samples reveal that the produced sulfides were fragile and tend to alternate very fast. However, we were able to provide clean reflectance spectra of all samples. The spectra of un-altered samples show no peaks or bands but a rather constant spectrum within the analyzed spectral range between 7.0 and 12.5 μm. The altered spectra contain signatures of sulfates and carbonates and probably further compounds. The gathered data help to understand the formation conditions of the studies sulfides as it shows that the solvus exists in the CaS-MgS system between 1000°C and 1200°C. In addition, the infrared data will help to improve remote sensing in the mid-infrared of planetary objects that might be covered with sulfide containing material like asteroids or Mercury.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"129 8","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008483","citationCount":"0","resultStr":"{\"title\":\"Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution\",\"authors\":\"Maximilian P. Reitze, Christian Renggli, Andreas Morlok, Iris Weber, Uta Rodehorst, Jasper Berndt, Stephan Klemme, Harald Hiesinger\",\"doi\":\"10.1029/2024JE008483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We synthesized the solid solution between the sulfides CaS (oldhamite) and MgS (niningerite). Electron microprobe and X-ray diffraction showed homogeneous and pure samples after the synthesis. The calculated lattice parameters fit to earlier literature data. Mid-infrared spectroscopy of the samples reveal that the produced sulfides were fragile and tend to alternate very fast. However, we were able to provide clean reflectance spectra of all samples. The spectra of un-altered samples show no peaks or bands but a rather constant spectrum within the analyzed spectral range between 7.0 and 12.5 μm. The altered spectra contain signatures of sulfates and carbonates and probably further compounds. The gathered data help to understand the formation conditions of the studies sulfides as it shows that the solvus exists in the CaS-MgS system between 1000°C and 1200°C. In addition, the infrared data will help to improve remote sensing in the mid-infrared of planetary objects that might be covered with sulfide containing material like asteroids or Mercury.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":\"129 8\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JE008483\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008483\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JE008483","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Crystallographic and Mid-Infrared Spectroscopic Properties of the CaS-MgS Solid Solution
We synthesized the solid solution between the sulfides CaS (oldhamite) and MgS (niningerite). Electron microprobe and X-ray diffraction showed homogeneous and pure samples after the synthesis. The calculated lattice parameters fit to earlier literature data. Mid-infrared spectroscopy of the samples reveal that the produced sulfides were fragile and tend to alternate very fast. However, we were able to provide clean reflectance spectra of all samples. The spectra of un-altered samples show no peaks or bands but a rather constant spectrum within the analyzed spectral range between 7.0 and 12.5 μm. The altered spectra contain signatures of sulfates and carbonates and probably further compounds. The gathered data help to understand the formation conditions of the studies sulfides as it shows that the solvus exists in the CaS-MgS system between 1000°C and 1200°C. In addition, the infrared data will help to improve remote sensing in the mid-infrared of planetary objects that might be covered with sulfide containing material like asteroids or Mercury.
期刊介绍:
The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.