{"title":"PTCC:基于隐私保护和轨迹聚类的车载网络合作缓存优化方法","authors":"Tengfei Cao;Zizhen Zhang;Xiaoying Wang;Han Xiao;Changqiao Xu","doi":"10.1109/TSUSC.2024.3350386","DOIUrl":null,"url":null,"abstract":"5G vehicular networks provide abundant multimedia services among mobile vehicles. However, due to the mobility of vehicles, large-scale mobile traffic poses a challenge to the core network load and transmission latency. It is difficult for existing solutions to guarantee the quality of service (QoS) of vehicular networks. Besides, the sensitivity of vehicle trajectories also brings privacy concerns in vehicular networks. To address these problems, we propose a privacy-preserving and trajectory clustering-based framework for cooperative caching optimization (PTCC) in vehicular networks, which includes two tasks. Specifically, in the first task, we first apply differential privacy technologies to add noise to vehicle trajectories. In addition, a data aggregation model is provided to make the trade-off between aggregation accuracy and privacy protection. In order to analyze similar behavioral vehicles, trajectory clustering is then achieved by utilizing machine learning algorithms. In the second task, we construct a cooperative caching objective function with the transmission latency. Afterwards, the multi-agent deep Q network (MADQN) is leveraged to obtain the goal of caching optimization, which can achieve low delay. Finally, extensive simulation results verify that our framework respectively improves the QoS up to 9.8% and 12.8% with different file numbers and caching capacities, compared with other state-of-the-art solutions.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 4","pages":"615-630"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PTCC: A Privacy-Preserving and Trajectory Clustering-Based Approach for Cooperative Caching Optimization in Vehicular Networks\",\"authors\":\"Tengfei Cao;Zizhen Zhang;Xiaoying Wang;Han Xiao;Changqiao Xu\",\"doi\":\"10.1109/TSUSC.2024.3350386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"5G vehicular networks provide abundant multimedia services among mobile vehicles. However, due to the mobility of vehicles, large-scale mobile traffic poses a challenge to the core network load and transmission latency. It is difficult for existing solutions to guarantee the quality of service (QoS) of vehicular networks. Besides, the sensitivity of vehicle trajectories also brings privacy concerns in vehicular networks. To address these problems, we propose a privacy-preserving and trajectory clustering-based framework for cooperative caching optimization (PTCC) in vehicular networks, which includes two tasks. Specifically, in the first task, we first apply differential privacy technologies to add noise to vehicle trajectories. In addition, a data aggregation model is provided to make the trade-off between aggregation accuracy and privacy protection. In order to analyze similar behavioral vehicles, trajectory clustering is then achieved by utilizing machine learning algorithms. In the second task, we construct a cooperative caching objective function with the transmission latency. Afterwards, the multi-agent deep Q network (MADQN) is leveraged to obtain the goal of caching optimization, which can achieve low delay. Finally, extensive simulation results verify that our framework respectively improves the QoS up to 9.8% and 12.8% with different file numbers and caching capacities, compared with other state-of-the-art solutions.\",\"PeriodicalId\":13268,\"journal\":{\"name\":\"IEEE Transactions on Sustainable Computing\",\"volume\":\"9 4\",\"pages\":\"615-630\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Sustainable Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10381759/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10381759/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
PTCC: A Privacy-Preserving and Trajectory Clustering-Based Approach for Cooperative Caching Optimization in Vehicular Networks
5G vehicular networks provide abundant multimedia services among mobile vehicles. However, due to the mobility of vehicles, large-scale mobile traffic poses a challenge to the core network load and transmission latency. It is difficult for existing solutions to guarantee the quality of service (QoS) of vehicular networks. Besides, the sensitivity of vehicle trajectories also brings privacy concerns in vehicular networks. To address these problems, we propose a privacy-preserving and trajectory clustering-based framework for cooperative caching optimization (PTCC) in vehicular networks, which includes two tasks. Specifically, in the first task, we first apply differential privacy technologies to add noise to vehicle trajectories. In addition, a data aggregation model is provided to make the trade-off between aggregation accuracy and privacy protection. In order to analyze similar behavioral vehicles, trajectory clustering is then achieved by utilizing machine learning algorithms. In the second task, we construct a cooperative caching objective function with the transmission latency. Afterwards, the multi-agent deep Q network (MADQN) is leveraged to obtain the goal of caching optimization, which can achieve low delay. Finally, extensive simulation results verify that our framework respectively improves the QoS up to 9.8% and 12.8% with different file numbers and caching capacities, compared with other state-of-the-art solutions.