{"title":"具有声学体积和流量感应功能的连续皮下胰岛素输注(CSII)泵在模拟高后果情况下的表现","authors":"Robert D. Butterfield;Nathaniel M. Sims","doi":"10.1109/OJEMB.2024.3408092","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n An insulin pump's failure to deliver insulin in the right amount at the right time is a preventable cause of hospitalization. We evaluated key performance metrics of a novel insulin pump that prevents “silent insulin non-delivery” caused by blockage, delivery of air and site leakage. This is accomplished via an acoustic sensor that measures the volume of insulin delivered with each pulse in real-time. \n<italic>Methods:</i>\n We tested long and short-term flow accuracy, occlusion-detection time and pressure, and air management of the new device (ND) versus 3 U.S. commercial insulin pumps (CIPs) using standardized methods. \n<italic>Results:</i>\n The ND outperformed CIPs on long-term basal flow rate error. Occlusion detection was 5 to 22.5 times faster depending on the basal rate and resulted in significantly lower (2 to 5x) pressures at time of occlusion. With air included in the drug reservoir, the tested CIPs can infuse air without detection, while the ND prevented air delivery without interruption. \n<italic>Conclusions:</i>\n Bench tests of the ND versus 3 commercially available pumps showed improved occlusion detection and air management without flow performance tradeoffs. Additionally, the lower delivery pressure measured at time of occlusion suggests a substantially lower potential for site leakage at both basal and bolus rates. These enhancements combine to decrease the likelihood of silent insulin non-delivery.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"5 ","pages":"593-599"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547403","citationCount":"0","resultStr":"{\"title\":\"Performance of a Continuous Subcutaneous Insulin Infusion (CSII) Pump With Acoustic Volume and Flow Sensing in Simulated High-Consequence Situations\",\"authors\":\"Robert D. Butterfield;Nathaniel M. Sims\",\"doi\":\"10.1109/OJEMB.2024.3408092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<italic>Goal:</i>\\n An insulin pump's failure to deliver insulin in the right amount at the right time is a preventable cause of hospitalization. We evaluated key performance metrics of a novel insulin pump that prevents “silent insulin non-delivery” caused by blockage, delivery of air and site leakage. This is accomplished via an acoustic sensor that measures the volume of insulin delivered with each pulse in real-time. \\n<italic>Methods:</i>\\n We tested long and short-term flow accuracy, occlusion-detection time and pressure, and air management of the new device (ND) versus 3 U.S. commercial insulin pumps (CIPs) using standardized methods. \\n<italic>Results:</i>\\n The ND outperformed CIPs on long-term basal flow rate error. Occlusion detection was 5 to 22.5 times faster depending on the basal rate and resulted in significantly lower (2 to 5x) pressures at time of occlusion. With air included in the drug reservoir, the tested CIPs can infuse air without detection, while the ND prevented air delivery without interruption. \\n<italic>Conclusions:</i>\\n Bench tests of the ND versus 3 commercially available pumps showed improved occlusion detection and air management without flow performance tradeoffs. Additionally, the lower delivery pressure measured at time of occlusion suggests a substantially lower potential for site leakage at both basal and bolus rates. These enhancements combine to decrease the likelihood of silent insulin non-delivery.\",\"PeriodicalId\":33825,\"journal\":{\"name\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"volume\":\"5 \",\"pages\":\"593-599\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10547403\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Engineering in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10547403/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10547403/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Performance of a Continuous Subcutaneous Insulin Infusion (CSII) Pump With Acoustic Volume and Flow Sensing in Simulated High-Consequence Situations
Goal:
An insulin pump's failure to deliver insulin in the right amount at the right time is a preventable cause of hospitalization. We evaluated key performance metrics of a novel insulin pump that prevents “silent insulin non-delivery” caused by blockage, delivery of air and site leakage. This is accomplished via an acoustic sensor that measures the volume of insulin delivered with each pulse in real-time.
Methods:
We tested long and short-term flow accuracy, occlusion-detection time and pressure, and air management of the new device (ND) versus 3 U.S. commercial insulin pumps (CIPs) using standardized methods.
Results:
The ND outperformed CIPs on long-term basal flow rate error. Occlusion detection was 5 to 22.5 times faster depending on the basal rate and resulted in significantly lower (2 to 5x) pressures at time of occlusion. With air included in the drug reservoir, the tested CIPs can infuse air without detection, while the ND prevented air delivery without interruption.
Conclusions:
Bench tests of the ND versus 3 commercially available pumps showed improved occlusion detection and air management without flow performance tradeoffs. Additionally, the lower delivery pressure measured at time of occlusion suggests a substantially lower potential for site leakage at both basal and bolus rates. These enhancements combine to decrease the likelihood of silent insulin non-delivery.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.