Sheng Qi;Rui Wang;Tao Zhang;Weixiong Huang;Fan Yu;Ling Wang
{"title":"用模式挖掘增强进化算法,解决稀疏的大规模多目标优化问题","authors":"Sheng Qi;Rui Wang;Tao Zhang;Weixiong Huang;Fan Yu;Ling Wang","doi":"10.1109/JAS.2024.124548","DOIUrl":null,"url":null,"abstract":"Sparse large-scale multi-objective optimization problems (SLMOPs) are common in science and engineering. However, the large-scale problem represents the high dimensionality of the decision space, requiring algorithms to traverse vast expanse with limited computational resources. Furthermore, in the context of sparse, most variables in Pareto optimal solutions are zero, making it difficult for algorithms to identify non-zero variables efficiently. This paper is dedicated to addressing the challenges posed by SLMOPs. To start, we introduce innovative objective functions customized to mine maximum and minimum candidate sets. This substantial enhancement dramatically improves the efficacy of frequent pattern mining. In this way, selecting candidate sets is no longer based on the quantity of non-zero variables they contain but on a higher proportion of non-zero variables within specific dimensions. Additionally, we unveil a novel approach to association rule mining, which delves into the intricate relationships between non-zero variables. This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value. We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs. The results demonstrate that our approach achieves competitive solutions across various challenges.","PeriodicalId":54230,"journal":{"name":"Ieee-Caa Journal of Automatica Sinica","volume":"11 8","pages":"1786-1801"},"PeriodicalIF":15.3000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems\",\"authors\":\"Sheng Qi;Rui Wang;Tao Zhang;Weixiong Huang;Fan Yu;Ling Wang\",\"doi\":\"10.1109/JAS.2024.124548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse large-scale multi-objective optimization problems (SLMOPs) are common in science and engineering. However, the large-scale problem represents the high dimensionality of the decision space, requiring algorithms to traverse vast expanse with limited computational resources. Furthermore, in the context of sparse, most variables in Pareto optimal solutions are zero, making it difficult for algorithms to identify non-zero variables efficiently. This paper is dedicated to addressing the challenges posed by SLMOPs. To start, we introduce innovative objective functions customized to mine maximum and minimum candidate sets. This substantial enhancement dramatically improves the efficacy of frequent pattern mining. In this way, selecting candidate sets is no longer based on the quantity of non-zero variables they contain but on a higher proportion of non-zero variables within specific dimensions. Additionally, we unveil a novel approach to association rule mining, which delves into the intricate relationships between non-zero variables. This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value. We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs. The results demonstrate that our approach achieves competitive solutions across various challenges.\",\"PeriodicalId\":54230,\"journal\":{\"name\":\"Ieee-Caa Journal of Automatica Sinica\",\"volume\":\"11 8\",\"pages\":\"1786-1801\"},\"PeriodicalIF\":15.3000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ieee-Caa Journal of Automatica Sinica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605759/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieee-Caa Journal of Automatica Sinica","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605759/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
Sparse large-scale multi-objective optimization problems (SLMOPs) are common in science and engineering. However, the large-scale problem represents the high dimensionality of the decision space, requiring algorithms to traverse vast expanse with limited computational resources. Furthermore, in the context of sparse, most variables in Pareto optimal solutions are zero, making it difficult for algorithms to identify non-zero variables efficiently. This paper is dedicated to addressing the challenges posed by SLMOPs. To start, we introduce innovative objective functions customized to mine maximum and minimum candidate sets. This substantial enhancement dramatically improves the efficacy of frequent pattern mining. In this way, selecting candidate sets is no longer based on the quantity of non-zero variables they contain but on a higher proportion of non-zero variables within specific dimensions. Additionally, we unveil a novel approach to association rule mining, which delves into the intricate relationships between non-zero variables. This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value. We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs. The results demonstrate that our approach achieves competitive solutions across various challenges.
期刊介绍:
The IEEE/CAA Journal of Automatica Sinica is a reputable journal that publishes high-quality papers in English on original theoretical/experimental research and development in the field of automation. The journal covers a wide range of topics including automatic control, artificial intelligence and intelligent control, systems theory and engineering, pattern recognition and intelligent systems, automation engineering and applications, information processing and information systems, network-based automation, robotics, sensing and measurement, and navigation, guidance, and control.
Additionally, the journal is abstracted/indexed in several prominent databases including SCIE (Science Citation Index Expanded), EI (Engineering Index), Inspec, Scopus, SCImago, DBLP, CNKI (China National Knowledge Infrastructure), CSCD (Chinese Science Citation Database), and IEEE Xplore.