Yahui Cao;Tao Zhang;Xin Zhao;Yuzheng Yan;Shuxin Cui
{"title":"基于改进的代用模型辅助进化算法的视频局部调光技术","authors":"Yahui Cao;Tao Zhang;Xin Zhao;Yuzheng Yan;Shuxin Cui","doi":"10.1109/TETCI.2024.3370033","DOIUrl":null,"url":null,"abstract":"Compared with the traditional liquid crystal displays (LCD) systems, the local dimming systems can obtain higher display quality with lower power consumption. Considering local dimming of the static image as an optimization problem and solving it based on an evolutionary algorithm, a set of optimal backlight matrix can be obtained. However, the local dimming algorithm based on evolutionary algorithm is no longer applicable for the video sequences because the calculation is very time-consuming. This paper proposes a local dimming algorithm based on improved surrogate model assisted evolutional algorithm (ISAEA-LD). In this algorithm, the surrogate model assisted evolutionary algorithm is applied to solve the local dimming problem of the video sequences. The surrogate model is used to reduce the complexity of individual fitness evaluation of the evolutionary algorithm. Firstly, a surrogate model based on convolutional neural network is adopted to improve the accuracy of individual fitness evaluation of surrogate model. Secondly, the algorithm introduces the backlight update strategy based on the content correlation between the video sequences' adjacent frames and the model transfer strategy based on transfer learning to improve the efficiency of the algorithm. Experimental results show that the proposed ISAEA-LD algorithm can obtain better visual quality and higher algorithm efficiency.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 4","pages":"3166-3179"},"PeriodicalIF":5.3000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local Dimming for Video Based on an Improved Surrogate Model Assisted Evolutionary Algorithm\",\"authors\":\"Yahui Cao;Tao Zhang;Xin Zhao;Yuzheng Yan;Shuxin Cui\",\"doi\":\"10.1109/TETCI.2024.3370033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with the traditional liquid crystal displays (LCD) systems, the local dimming systems can obtain higher display quality with lower power consumption. Considering local dimming of the static image as an optimization problem and solving it based on an evolutionary algorithm, a set of optimal backlight matrix can be obtained. However, the local dimming algorithm based on evolutionary algorithm is no longer applicable for the video sequences because the calculation is very time-consuming. This paper proposes a local dimming algorithm based on improved surrogate model assisted evolutional algorithm (ISAEA-LD). In this algorithm, the surrogate model assisted evolutionary algorithm is applied to solve the local dimming problem of the video sequences. The surrogate model is used to reduce the complexity of individual fitness evaluation of the evolutionary algorithm. Firstly, a surrogate model based on convolutional neural network is adopted to improve the accuracy of individual fitness evaluation of surrogate model. Secondly, the algorithm introduces the backlight update strategy based on the content correlation between the video sequences' adjacent frames and the model transfer strategy based on transfer learning to improve the efficiency of the algorithm. Experimental results show that the proposed ISAEA-LD algorithm can obtain better visual quality and higher algorithm efficiency.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 4\",\"pages\":\"3166-3179\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10474056/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10474056/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Local Dimming for Video Based on an Improved Surrogate Model Assisted Evolutionary Algorithm
Compared with the traditional liquid crystal displays (LCD) systems, the local dimming systems can obtain higher display quality with lower power consumption. Considering local dimming of the static image as an optimization problem and solving it based on an evolutionary algorithm, a set of optimal backlight matrix can be obtained. However, the local dimming algorithm based on evolutionary algorithm is no longer applicable for the video sequences because the calculation is very time-consuming. This paper proposes a local dimming algorithm based on improved surrogate model assisted evolutional algorithm (ISAEA-LD). In this algorithm, the surrogate model assisted evolutionary algorithm is applied to solve the local dimming problem of the video sequences. The surrogate model is used to reduce the complexity of individual fitness evaluation of the evolutionary algorithm. Firstly, a surrogate model based on convolutional neural network is adopted to improve the accuracy of individual fitness evaluation of surrogate model. Secondly, the algorithm introduces the backlight update strategy based on the content correlation between the video sequences' adjacent frames and the model transfer strategy based on transfer learning to improve the efficiency of the algorithm. Experimental results show that the proposed ISAEA-LD algorithm can obtain better visual quality and higher algorithm efficiency.
期刊介绍:
The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys.
TETCI is an electronics only publication. TETCI publishes six issues per year.
Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.