利用基于快速 R-CNN 模型的自动图像标注,有效检测和跟踪物体

K. Vijiyakumar (Assistant Professor) , V. Govindasamy (Associate Professor) , V. Akila (Assistant Professor)
{"title":"利用基于快速 R-CNN 模型的自动图像标注,有效检测和跟踪物体","authors":"K. Vijiyakumar (Assistant Professor) ,&nbsp;V. Govindasamy (Associate Professor) ,&nbsp;V. Akila (Assistant Professor)","doi":"10.1016/j.ijcce.2024.07.006","DOIUrl":null,"url":null,"abstract":"<div><p>The present study advances object detection and tracking techniques by proposing a novel model combining Automated Image Annotation with Inception v2-based Faster RCNN (AIA-IFRCNN). The research methodology utilizes the DCF-CSRT model for image annotation, Faster RCNN for object detection, and the inception v2 model for feature extraction, followed by a softmax layer for image classification. The proposed AIA-IFRCNN model is evaluated on three benchmark datasets: Bird (Dataset 1), UCSDped2 (Dataset 2), and Under Water (Dataset 3), to determine prediction accuracy, annotation time, Center Location Error (CLE), and Overlap Rate (OR). The experimental results indicate that the AIA-IFRCNN model outperformed existing models regarding detection accuracy and tracking performance. Notably, it achieved a maximum detection accuracy of 95.62 % on Dataset 1, outperforming other models. Additionally, it achieved minimum average CLE values of 4.16, 5.78, and 3.54, and higher overlap rates of 0.92, 0.90, and 0.94 on the respective datasets (1, 2 and 3). Hence, this research work on object detection and tracking using the AIA-IFRCNN model is essential for improving system efficiency and fostering innovation in the field of computer vision and object tracking.</p></div>","PeriodicalId":100694,"journal":{"name":"International Journal of Cognitive Computing in Engineering","volume":"5 ","pages":"Pages 343-356"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666307424000275/pdfft?md5=c89eb23204a378c89f4401b7c58b2cd7&pid=1-s2.0-S2666307424000275-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An effective object detection and tracking using automated image annotation with inception based faster R-CNN model\",\"authors\":\"K. Vijiyakumar (Assistant Professor) ,&nbsp;V. Govindasamy (Associate Professor) ,&nbsp;V. Akila (Assistant Professor)\",\"doi\":\"10.1016/j.ijcce.2024.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The present study advances object detection and tracking techniques by proposing a novel model combining Automated Image Annotation with Inception v2-based Faster RCNN (AIA-IFRCNN). The research methodology utilizes the DCF-CSRT model for image annotation, Faster RCNN for object detection, and the inception v2 model for feature extraction, followed by a softmax layer for image classification. The proposed AIA-IFRCNN model is evaluated on three benchmark datasets: Bird (Dataset 1), UCSDped2 (Dataset 2), and Under Water (Dataset 3), to determine prediction accuracy, annotation time, Center Location Error (CLE), and Overlap Rate (OR). The experimental results indicate that the AIA-IFRCNN model outperformed existing models regarding detection accuracy and tracking performance. Notably, it achieved a maximum detection accuracy of 95.62 % on Dataset 1, outperforming other models. Additionally, it achieved minimum average CLE values of 4.16, 5.78, and 3.54, and higher overlap rates of 0.92, 0.90, and 0.94 on the respective datasets (1, 2 and 3). Hence, this research work on object detection and tracking using the AIA-IFRCNN model is essential for improving system efficiency and fostering innovation in the field of computer vision and object tracking.</p></div>\",\"PeriodicalId\":100694,\"journal\":{\"name\":\"International Journal of Cognitive Computing in Engineering\",\"volume\":\"5 \",\"pages\":\"Pages 343-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000275/pdfft?md5=c89eb23204a378c89f4401b7c58b2cd7&pid=1-s2.0-S2666307424000275-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cognitive Computing in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666307424000275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cognitive Computing in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666307424000275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种将自动图像标注与基于 Inception v2 的更快 RCNN(AIA-IFRCNN)相结合的新型模型,从而推动了物体检测与跟踪技术的发展。研究方法利用 DCF-CSRT 模型进行图像标注,利用 Faster RCNN 进行物体检测,利用 Inception v2 模型进行特征提取,然后利用 softmax 层进行图像分类。提议的 AIA-IFRCNN 模型在三个基准数据集上进行了评估:数据集 1)、UCSDped2(数据集 2)和水下(数据集 3),以确定预测准确率、注释时间、中心位置误差(CLE)和重叠率(OR)。实验结果表明,AIA-IFRCNN 模型在检测精度和跟踪性能方面优于现有模型。值得注意的是,它在数据集 1 上的最高检测准确率达到了 95.62%,优于其他模型。此外,它的平均 CLE 值分别为 4.16、5.78 和 3.54,重叠率分别为 0.92、0.90 和 0.94。因此,利用 AIA-IFRCNN 模型进行物体检测和跟踪的研究工作对于提高系统效率和促进计算机视觉与物体跟踪领域的创新至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An effective object detection and tracking using automated image annotation with inception based faster R-CNN model

The present study advances object detection and tracking techniques by proposing a novel model combining Automated Image Annotation with Inception v2-based Faster RCNN (AIA-IFRCNN). The research methodology utilizes the DCF-CSRT model for image annotation, Faster RCNN for object detection, and the inception v2 model for feature extraction, followed by a softmax layer for image classification. The proposed AIA-IFRCNN model is evaluated on three benchmark datasets: Bird (Dataset 1), UCSDped2 (Dataset 2), and Under Water (Dataset 3), to determine prediction accuracy, annotation time, Center Location Error (CLE), and Overlap Rate (OR). The experimental results indicate that the AIA-IFRCNN model outperformed existing models regarding detection accuracy and tracking performance. Notably, it achieved a maximum detection accuracy of 95.62 % on Dataset 1, outperforming other models. Additionally, it achieved minimum average CLE values of 4.16, 5.78, and 3.54, and higher overlap rates of 0.92, 0.90, and 0.94 on the respective datasets (1, 2 and 3). Hence, this research work on object detection and tracking using the AIA-IFRCNN model is essential for improving system efficiency and fostering innovation in the field of computer vision and object tracking.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信