利用改进的扩展 tanh 函数方案表征具有立方-昆特非线性的 (3+1)- 维薛定谔方程中的随机孤子行为

Q2 Physics and Astronomy
Karim K. Ahmed , Hamdy M. Ahmed , Mohammed F. Shehab , Tarek A. Khalil , Homan Emadifar , Wafaa B. Rabie
{"title":"利用改进的扩展 tanh 函数方案表征具有立方-昆特非线性的 (3+1)- 维薛定谔方程中的随机孤子行为","authors":"Karim K. Ahmed ,&nbsp;Hamdy M. Ahmed ,&nbsp;Mohammed F. Shehab ,&nbsp;Tarek A. Khalil ,&nbsp;Homan Emadifar ,&nbsp;Wafaa B. Rabie","doi":"10.1016/j.physo.2024.100233","DOIUrl":null,"url":null,"abstract":"<div><p>An extended version of (3+1)-dimensional non-linear Schrödinger equation that has a cubic–quintic nonlinear component under the stochastic effects is examined in this investigation. Several stochastic exact solutions of this model is acquired through the application of the improved modified extended tanh-function scheme (IMETFS). This method offers a practical and effective approach to finding precise solutions to several kinds of nonlinear partial differential equations. In addition, these solutions include stochastic soliton solutions (bright, singular, combo dark-singular), and exact solution such as singular periodic, Jacobi elliptic function, Weierstrass elliptic doubly periodic solution, rational, and exponential functions. Since it is the first study of its sort to examine multiplicative white noise’s impacts in this particular setting, it offers fresh insights and innovative research approaches for the field’s future studies. The work adds much to our understanding of soliton theory and how it relates to optical fiber technology while illuminating hitherto unknown facets of multiplicative white noise. To illustrate the impact of the noise, a few recovered solutions with varying noise strengths are given graphically as examples.</p></div>","PeriodicalId":36067,"journal":{"name":"Physics Open","volume":"21 ","pages":"Article 100233"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666032624000310/pdfft?md5=7611d8061c564f917aaf2b0192804768&pid=1-s2.0-S2666032624000310-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing stochastic solitons behavior in (3+1)-dimensional Schrödinger equation with Cubic–Quintic nonlinearity using improved modified extended tanh-function scheme\",\"authors\":\"Karim K. Ahmed ,&nbsp;Hamdy M. Ahmed ,&nbsp;Mohammed F. Shehab ,&nbsp;Tarek A. Khalil ,&nbsp;Homan Emadifar ,&nbsp;Wafaa B. Rabie\",\"doi\":\"10.1016/j.physo.2024.100233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An extended version of (3+1)-dimensional non-linear Schrödinger equation that has a cubic–quintic nonlinear component under the stochastic effects is examined in this investigation. Several stochastic exact solutions of this model is acquired through the application of the improved modified extended tanh-function scheme (IMETFS). This method offers a practical and effective approach to finding precise solutions to several kinds of nonlinear partial differential equations. In addition, these solutions include stochastic soliton solutions (bright, singular, combo dark-singular), and exact solution such as singular periodic, Jacobi elliptic function, Weierstrass elliptic doubly periodic solution, rational, and exponential functions. Since it is the first study of its sort to examine multiplicative white noise’s impacts in this particular setting, it offers fresh insights and innovative research approaches for the field’s future studies. The work adds much to our understanding of soliton theory and how it relates to optical fiber technology while illuminating hitherto unknown facets of multiplicative white noise. To illustrate the impact of the noise, a few recovered solutions with varying noise strengths are given graphically as examples.</p></div>\",\"PeriodicalId\":36067,\"journal\":{\"name\":\"Physics Open\",\"volume\":\"21 \",\"pages\":\"Article 100233\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000310/pdfft?md5=7611d8061c564f917aaf2b0192804768&pid=1-s2.0-S2666032624000310-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666032624000310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666032624000310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

在随机效应下,(3+1)维非线性薛定谔方程的一个扩展版本具有三次-五次非线性成分。通过应用改进的扩展 tanh 函数方案(IMETFS),获得了该模型的若干随机精确解。这种方法为寻找多种非线性偏微分方程的精确解提供了一种实用而有效的方法。此外,这些解还包括随机孤子解(明孤子、奇孤子、组合暗孤子),以及奇周期、雅可比椭圆函数、魏尔斯特拉斯椭圆双周期解、有理函数和指数函数等精确解。由于这是首次研究乘法白噪声在这一特定环境中的影响,它为该领域的未来研究提供了新的见解和创新的研究方法。这项工作大大加深了我们对孤子理论及其与光纤技术关系的理解,同时也揭示了乘法白噪声迄今未知的一面。为了说明噪声的影响,我们以图举例说明了不同噪声强度下的一些复原解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing stochastic solitons behavior in (3+1)-dimensional Schrödinger equation with Cubic–Quintic nonlinearity using improved modified extended tanh-function scheme

An extended version of (3+1)-dimensional non-linear Schrödinger equation that has a cubic–quintic nonlinear component under the stochastic effects is examined in this investigation. Several stochastic exact solutions of this model is acquired through the application of the improved modified extended tanh-function scheme (IMETFS). This method offers a practical and effective approach to finding precise solutions to several kinds of nonlinear partial differential equations. In addition, these solutions include stochastic soliton solutions (bright, singular, combo dark-singular), and exact solution such as singular periodic, Jacobi elliptic function, Weierstrass elliptic doubly periodic solution, rational, and exponential functions. Since it is the first study of its sort to examine multiplicative white noise’s impacts in this particular setting, it offers fresh insights and innovative research approaches for the field’s future studies. The work adds much to our understanding of soliton theory and how it relates to optical fiber technology while illuminating hitherto unknown facets of multiplicative white noise. To illustrate the impact of the noise, a few recovered solutions with varying noise strengths are given graphically as examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Open
Physics Open Physics and Astronomy-Physics and Astronomy (all)
CiteScore
3.20
自引率
0.00%
发文量
19
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信