微封闭高压跨临界湍流实验时空尺度的数据信息表征

IF 2.8 2区 工程技术 Q2 ENGINEERING, MECHANICAL
Enrique Hurtán , Carlos Monteiro , Marc Jofre , Jasmina Casals-Terré , Lluís Jofre
{"title":"微封闭高压跨临界湍流实验时空尺度的数据信息表征","authors":"Enrique Hurtán ,&nbsp;Carlos Monteiro ,&nbsp;Marc Jofre ,&nbsp;Jasmina Casals-Terré ,&nbsp;Lluís Jofre","doi":"10.1016/j.expthermflusci.2024.111282","DOIUrl":null,"url":null,"abstract":"<div><p>The spatio-temporal scales of microconfined high-pressure transcritical turbulence are characterized in relation to the resolution capabilities of present time-resolved two-dimensional <span><math><mi>μ</mi></math></span>PIV technology. Utilizing <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as the working fluid, the physical scales are examined by considering the main dimensionless groups of the problem, which correspond to the Reynolds, Brinkman, and Stokes numbers and the mass fraction of particles in the fluid. In detail, the methodology employed leverages direct numerical simulation data to inform the estimation of hydrodynamic, thermophysical, and particle-related scales, and selects a state-of-the-art <span><math><mi>μ</mi></math></span>PIV setup to describe the optical performance of the current technology. The results indicate that the temporal scales can be experimentally captured for a wide range of operating conditions. However, the scenario becomes much more complex when trying to capture the spatial scales of microconfined high-pressure transcritical turbulent flow. Particularly, the Kolmogorov and Batchelor spatial scales can be captured for bulk Reynolds numbers below <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Otherwise, the spatial scales can only be partially captured and/or remain completely masked due to insufficient resolution, like for example in the case of boundary layer viscous scales and fluid density variations. This limitation is not imposed by the tracer behavior of microparticles, as the Stokes number remains significantly low for all the system configurations studied. Instead, the limitation is mainly a result of the optical capabilities of present <span><math><mi>μ</mi></math></span>PIV systems. Finally, given the generalizable properties of dimensionless numbers, the results and insight obtained can be extended to other experiments of <span><math><mi>μ</mi></math></span>PIV-based visualization/quantification of microconfined multiscale flows involving large thermophysical variations.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"159 ","pages":"Article 111282"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0894177724001511/pdfft?md5=d7ae0722a7382e6146445b2b69e932d4&pid=1-s2.0-S0894177724001511-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Data-informed characterization of spatio-temporal scales in experiments of microconfined high-pressure transcritical turbulence\",\"authors\":\"Enrique Hurtán ,&nbsp;Carlos Monteiro ,&nbsp;Marc Jofre ,&nbsp;Jasmina Casals-Terré ,&nbsp;Lluís Jofre\",\"doi\":\"10.1016/j.expthermflusci.2024.111282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spatio-temporal scales of microconfined high-pressure transcritical turbulence are characterized in relation to the resolution capabilities of present time-resolved two-dimensional <span><math><mi>μ</mi></math></span>PIV technology. Utilizing <span><math><msub><mrow><mi>CO</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> as the working fluid, the physical scales are examined by considering the main dimensionless groups of the problem, which correspond to the Reynolds, Brinkman, and Stokes numbers and the mass fraction of particles in the fluid. In detail, the methodology employed leverages direct numerical simulation data to inform the estimation of hydrodynamic, thermophysical, and particle-related scales, and selects a state-of-the-art <span><math><mi>μ</mi></math></span>PIV setup to describe the optical performance of the current technology. The results indicate that the temporal scales can be experimentally captured for a wide range of operating conditions. However, the scenario becomes much more complex when trying to capture the spatial scales of microconfined high-pressure transcritical turbulent flow. Particularly, the Kolmogorov and Batchelor spatial scales can be captured for bulk Reynolds numbers below <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>. Otherwise, the spatial scales can only be partially captured and/or remain completely masked due to insufficient resolution, like for example in the case of boundary layer viscous scales and fluid density variations. This limitation is not imposed by the tracer behavior of microparticles, as the Stokes number remains significantly low for all the system configurations studied. Instead, the limitation is mainly a result of the optical capabilities of present <span><math><mi>μ</mi></math></span>PIV systems. Finally, given the generalizable properties of dimensionless numbers, the results and insight obtained can be extended to other experiments of <span><math><mi>μ</mi></math></span>PIV-based visualization/quantification of microconfined multiscale flows involving large thermophysical variations.</p></div>\",\"PeriodicalId\":12294,\"journal\":{\"name\":\"Experimental Thermal and Fluid Science\",\"volume\":\"159 \",\"pages\":\"Article 111282\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001511/pdfft?md5=d7ae0722a7382e6146445b2b69e932d4&pid=1-s2.0-S0894177724001511-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Thermal and Fluid Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0894177724001511\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001511","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

根据目前时间分辨二维 μPIV 技术的分辨率能力,对微封闭高压跨临界湍流的时空尺度进行了描述。利用二氧化碳作为工作流体,通过考虑问题的主要无量纲组(对应于雷诺数、布林克曼数和斯托克斯数以及流体中颗粒的质量分数)来研究物理尺度。具体而言,所采用的方法利用直接数值模拟数据来估算流体力学、热物理和颗粒相关尺度,并选择最先进的 μPIV 设置来描述当前技术的光学性能。结果表明,可以通过实验捕捉到各种运行条件下的时间尺度。然而,当试图捕捉微封闭高压跨临界湍流的空间尺度时,情况就变得复杂得多。特别是在体积雷诺数低于 O(103) 时,可以捕捉到 Kolmogorov 和 Batchelor 空间尺度。否则,由于分辨率不足,空间尺度只能被部分捕捉和/或完全掩盖,例如边界层粘性尺度和流体密度变化。微颗粒的示踪行为并没有造成这种限制,因为在所研究的所有系统配置中,斯托克斯数都很低。相反,这种限制主要是由目前 μPIV 系统的光学能力造成的。最后,考虑到无量纲数的通用特性,所获得的结果和见解可扩展到其他基于 μPIV 的涉及大量热物理变化的微约束多尺度流动的可视化/量化实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-informed characterization of spatio-temporal scales in experiments of microconfined high-pressure transcritical turbulence

The spatio-temporal scales of microconfined high-pressure transcritical turbulence are characterized in relation to the resolution capabilities of present time-resolved two-dimensional μPIV technology. Utilizing CO2 as the working fluid, the physical scales are examined by considering the main dimensionless groups of the problem, which correspond to the Reynolds, Brinkman, and Stokes numbers and the mass fraction of particles in the fluid. In detail, the methodology employed leverages direct numerical simulation data to inform the estimation of hydrodynamic, thermophysical, and particle-related scales, and selects a state-of-the-art μPIV setup to describe the optical performance of the current technology. The results indicate that the temporal scales can be experimentally captured for a wide range of operating conditions. However, the scenario becomes much more complex when trying to capture the spatial scales of microconfined high-pressure transcritical turbulent flow. Particularly, the Kolmogorov and Batchelor spatial scales can be captured for bulk Reynolds numbers below O(103). Otherwise, the spatial scales can only be partially captured and/or remain completely masked due to insufficient resolution, like for example in the case of boundary layer viscous scales and fluid density variations. This limitation is not imposed by the tracer behavior of microparticles, as the Stokes number remains significantly low for all the system configurations studied. Instead, the limitation is mainly a result of the optical capabilities of present μPIV systems. Finally, given the generalizable properties of dimensionless numbers, the results and insight obtained can be extended to other experiments of μPIV-based visualization/quantification of microconfined multiscale flows involving large thermophysical variations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Thermal and Fluid Science
Experimental Thermal and Fluid Science 工程技术-工程:机械
CiteScore
6.70
自引率
3.10%
发文量
159
审稿时长
34 days
期刊介绍: Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信