计算第一类完整椭圆积分的数值算法的开源实现

IF 1.4 Q2 MATHEMATICS, APPLIED
Hong-Yan Zhang, Wen-Juan Jiang
{"title":"计算第一类完整椭圆积分的数值算法的开源实现","authors":"Hong-Yan Zhang,&nbsp;Wen-Juan Jiang","doi":"10.1016/j.rinam.2024.100479","DOIUrl":null,"url":null,"abstract":"<div><p>The complete elliptic integral of the first kind (CEI-1) plays a significant role in mathematics, physics and engineering. There is no simple formula for its computation, thus numerical algorithms are essential for coping with the practical problems involved. The commercial implementations for the numerical solutions, such as the functions <span>ellipticK</span> and <span>EllipticK</span> provided by MATLAB and Mathematica respectively, are based on <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span> instead of the usual form <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>m</mi><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. It is necessary to develop open source implementations for the computation of the CEI-1 in order to avoid potential risks of using commercial software and possible limitations due to the unknown factors. In this paper, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss–Chebyshev method and Gauss–Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing the CEI-1 are designed, verified, validated and tested, which can be utilized in R&amp; D and be reused properly. Numerical results show that our open source implementations based on <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> are equivalent to the commercial implementation based on <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. The general algorithms for computing orthogonal polynomials developed are valuable for the STEM education and scientific computation.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100479"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000499/pdfft?md5=627b9a01d19618ef936715d938552af0&pid=1-s2.0-S2590037424000499-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Open source implementations of numerical algorithms for computing the complete elliptic integral of the first kind\",\"authors\":\"Hong-Yan Zhang,&nbsp;Wen-Juan Jiang\",\"doi\":\"10.1016/j.rinam.2024.100479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The complete elliptic integral of the first kind (CEI-1) plays a significant role in mathematics, physics and engineering. There is no simple formula for its computation, thus numerical algorithms are essential for coping with the practical problems involved. The commercial implementations for the numerical solutions, such as the functions <span>ellipticK</span> and <span>EllipticK</span> provided by MATLAB and Mathematica respectively, are based on <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span> instead of the usual form <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> such that <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow><mo>=</mo><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>m</mi><mo>=</mo><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. It is necessary to develop open source implementations for the computation of the CEI-1 in order to avoid potential risks of using commercial software and possible limitations due to the unknown factors. In this paper, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss–Chebyshev method and Gauss–Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing the CEI-1 are designed, verified, validated and tested, which can be utilized in R&amp; D and be reused properly. Numerical results show that our open source implementations based on <span><math><mrow><mi>K</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> are equivalent to the commercial implementation based on <span><math><mrow><msub><mrow><mi>K</mi></mrow><mrow><mi>cs</mi></mrow></msub><mrow><mo>(</mo><mi>m</mi><mo>)</mo></mrow></mrow></math></span>. The general algorithms for computing orthogonal polynomials developed are valuable for the STEM education and scientific computation.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100479\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000499/pdfft?md5=627b9a01d19618ef936715d938552af0&pid=1-s2.0-S2590037424000499-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

第一类完全椭圆积分(CEI-1)在数学、物理学和工程学中发挥着重要作用。它没有简单的计算公式,因此数值算法对解决相关实际问题至关重要。数值解法的商业实现,如 MATLAB 和 Mathematica 分别提供的函数 ellipticK 和 EllipticK,都是基于 Kcs(m) 而不是通常的 K(k),即 Kcs(k2)=K(k) 和 m=k2。有必要开发用于计算 CEI-1 的开源实现,以避免使用商业软件的潜在风险和由于未知因素可能造成的限制。本文采用自顶向下的策略,详细讨论了无穷级数法、算术几何平均数(AGM)法、高斯-切比雪夫法和高斯-列根德雷法。设计、验证、确认和测试了计算 CEI-1 的四种关键算法,这些算法可在 R& D 中使用,并可适当重复使用。数值结果表明,我们基于 K(k) 的开源实现等同于基于 Kcs(m) 的商业实现。所开发的计算正交多项式的通用算法对 STEM 教育和科学计算非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Open source implementations of numerical algorithms for computing the complete elliptic integral of the first kind

Open source implementations of numerical algorithms for computing the complete elliptic integral of the first kind

The complete elliptic integral of the first kind (CEI-1) plays a significant role in mathematics, physics and engineering. There is no simple formula for its computation, thus numerical algorithms are essential for coping with the practical problems involved. The commercial implementations for the numerical solutions, such as the functions ellipticK and EllipticK provided by MATLAB and Mathematica respectively, are based on Kcs(m) instead of the usual form K(k) such that Kcs(k2)=K(k) and m=k2. It is necessary to develop open source implementations for the computation of the CEI-1 in order to avoid potential risks of using commercial software and possible limitations due to the unknown factors. In this paper, the infinite series method, arithmetic-geometric mean (AGM) method, Gauss–Chebyshev method and Gauss–Legendre methods are discussed in details with a top-down strategy. The four key algorithms for computing the CEI-1 are designed, verified, validated and tested, which can be utilized in R& D and be reused properly. Numerical results show that our open source implementations based on K(k) are equivalent to the commercial implementation based on Kcs(m). The general algorithms for computing orthogonal polynomials developed are valuable for the STEM education and scientific computation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信