通过动态调整优化参数,使用自动微调过程优化容积调制弧治疗前列腺规划

IF 3.4 Q2 ONCOLOGY
Hasan Cavus , Thierry Rondagh , Alexandra Jankelevitch , Koen Tournel , Marc Orlandini , Philippe Bulens , Laurence Delombaerde , Kenny Geens , Wouter Crijns , Brigitte Reniers
{"title":"通过动态调整优化参数,使用自动微调过程优化容积调制弧治疗前列腺规划","authors":"Hasan Cavus ,&nbsp;Thierry Rondagh ,&nbsp;Alexandra Jankelevitch ,&nbsp;Koen Tournel ,&nbsp;Marc Orlandini ,&nbsp;Philippe Bulens ,&nbsp;Laurence Delombaerde ,&nbsp;Kenny Geens ,&nbsp;Wouter Crijns ,&nbsp;Brigitte Reniers","doi":"10.1016/j.phro.2024.100619","DOIUrl":null,"url":null,"abstract":"<div><p>In radiotherapy treatment planning, optimization is essential for achieving the most favorable plan by adjusting optimization criteria. This study introduced an innovative approach to automatically fine-tune optimization parameters for volumetric modulated arc therapy prostate planning, ensuring all constraints were met. A knowledge-based planning model was invoked, and the fine-tuning process was applied through an in-house developed script. Among 25 prostate plans, this fine-tuning increased the number of plans meeting all constraints from 10/25 to 22/25, with a reduction in mean monitor units per gray without increasing plan’s complexity. This automation improved efficiency by saving time and resources in treatment planning.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000897/pdfft?md5=67b6d4c77a5c201be301070fcdd99b0c&pid=1-s2.0-S2405631624000897-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimizing volumetric modulated arc therapy prostate planning using an automated Fine-Tuning process through dynamic adjustment of optimization parameters\",\"authors\":\"Hasan Cavus ,&nbsp;Thierry Rondagh ,&nbsp;Alexandra Jankelevitch ,&nbsp;Koen Tournel ,&nbsp;Marc Orlandini ,&nbsp;Philippe Bulens ,&nbsp;Laurence Delombaerde ,&nbsp;Kenny Geens ,&nbsp;Wouter Crijns ,&nbsp;Brigitte Reniers\",\"doi\":\"10.1016/j.phro.2024.100619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In radiotherapy treatment planning, optimization is essential for achieving the most favorable plan by adjusting optimization criteria. This study introduced an innovative approach to automatically fine-tune optimization parameters for volumetric modulated arc therapy prostate planning, ensuring all constraints were met. A knowledge-based planning model was invoked, and the fine-tuning process was applied through an in-house developed script. Among 25 prostate plans, this fine-tuning increased the number of plans meeting all constraints from 10/25 to 22/25, with a reduction in mean monitor units per gray without increasing plan’s complexity. This automation improved efficiency by saving time and resources in treatment planning.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000897/pdfft?md5=67b6d4c77a5c201be301070fcdd99b0c&pid=1-s2.0-S2405631624000897-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在放射治疗计划中,优化是通过调整优化标准实现最有利计划的关键。本研究引入了一种创新方法,用于自动微调体积调制弧治疗前列腺计划的优化参数,确保满足所有约束条件。该方法调用了基于知识的规划模型,并通过内部开发的脚本应用微调过程。在 25 个前列腺计划中,通过微调,符合所有限制条件的计划数量从 10/25 增加到 22/25,每个灰度的平均监测单位减少了,而计划的复杂性却没有增加。这种自动化节省了治疗计划的时间和资源,从而提高了效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing volumetric modulated arc therapy prostate planning using an automated Fine-Tuning process through dynamic adjustment of optimization parameters

In radiotherapy treatment planning, optimization is essential for achieving the most favorable plan by adjusting optimization criteria. This study introduced an innovative approach to automatically fine-tune optimization parameters for volumetric modulated arc therapy prostate planning, ensuring all constraints were met. A knowledge-based planning model was invoked, and the fine-tuning process was applied through an in-house developed script. Among 25 prostate plans, this fine-tuning increased the number of plans meeting all constraints from 10/25 to 22/25, with a reduction in mean monitor units per gray without increasing plan’s complexity. This automation improved efficiency by saving time and resources in treatment planning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信