十字网格上混合拉普拉斯特征值问题的二次和三次拉格朗日有限元

IF 1.4 Q2 MATHEMATICS, APPLIED
Kaibo Hu , Jiguang Sun , Qian Zhang
{"title":"十字网格上混合拉普拉斯特征值问题的二次和三次拉格朗日有限元","authors":"Kaibo Hu ,&nbsp;Jiguang Sun ,&nbsp;Qian Zhang","doi":"10.1016/j.rinam.2024.100480","DOIUrl":null,"url":null,"abstract":"<div><p>In Boffi et al. (2000), it was shown that the linear Lagrange element space on criss-cross meshes and its divergence exhibit spurious eigenvalues when applied in the mixed formulation of the Laplace eigenvalue problem, despite satisfying both the inf–sup condition and ellipticity on the discrete kernel. The lack of a Fortin interpolation is responsible for the spurious eigenvalues produced by the linear Lagrange space. In contrast, results in Boffi et al. (2022) confirm that quartic and higher-order Lagrange elements do not yield spurious eigenvalues on general meshes without nearly singular vertices, including criss-cross meshes as a special case. In this paper, we investigate quadratic and cubic Lagrange elements on criss-cross meshes. We prove the convergence of discrete eigenvalues by fitting the Lagrange elements on criss-cross meshes into a complex and constructing a Fortin interpolation. As a by-product, we construct bounded commuting projections for the finite element Stokes complex, which induces isomorphisms between cohomologies of the continuous and discrete complexes. We provide numerical examples to validate the theoretical results.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100480"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000505/pdfft?md5=2c0021dd60f95baf31623b82ce7aa04b&pid=1-s2.0-S2590037424000505-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Quadratic and cubic Lagrange finite elements for mixed Laplace eigenvalue problems on criss-cross meshes\",\"authors\":\"Kaibo Hu ,&nbsp;Jiguang Sun ,&nbsp;Qian Zhang\",\"doi\":\"10.1016/j.rinam.2024.100480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Boffi et al. (2000), it was shown that the linear Lagrange element space on criss-cross meshes and its divergence exhibit spurious eigenvalues when applied in the mixed formulation of the Laplace eigenvalue problem, despite satisfying both the inf–sup condition and ellipticity on the discrete kernel. The lack of a Fortin interpolation is responsible for the spurious eigenvalues produced by the linear Lagrange space. In contrast, results in Boffi et al. (2022) confirm that quartic and higher-order Lagrange elements do not yield spurious eigenvalues on general meshes without nearly singular vertices, including criss-cross meshes as a special case. In this paper, we investigate quadratic and cubic Lagrange elements on criss-cross meshes. We prove the convergence of discrete eigenvalues by fitting the Lagrange elements on criss-cross meshes into a complex and constructing a Fortin interpolation. As a by-product, we construct bounded commuting projections for the finite element Stokes complex, which induces isomorphisms between cohomologies of the continuous and discrete complexes. We provide numerical examples to validate the theoretical results.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100480\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000505/pdfft?md5=2c0021dd60f95baf31623b82ce7aa04b&pid=1-s2.0-S2590037424000505-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000505\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

Boffi 等人(2000 年)的研究表明,尽管满足离散核的 inf-sup 条件和椭圆性,但在拉普拉斯特征值问题的混合公式中应用十字网格上的线性拉格朗日元素空间及其发散时,会表现出假特征值。线性拉格朗日空间产生虚假特征值的原因是缺乏福尔廷插值。与此相反,Boffi 等人(2022 年)的研究结果证实,在没有近似奇异顶点的一般网格(包括作为特例的十字网格)上,四阶和高阶拉格朗日元素不会产生虚假特征值。本文研究了十字交叉网格上的二次方和三次方拉格朗日元素。我们通过将十字网格上的拉格朗日元素拟合到复数中并构建福尔廷插值来证明离散特征值的收敛性。作为副产品,我们构建了有限元斯托克斯复数的有界换向投影,从而在连续复数和离散复数的同构之间产生同构。我们提供了数值示例来验证理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quadratic and cubic Lagrange finite elements for mixed Laplace eigenvalue problems on criss-cross meshes

In Boffi et al. (2000), it was shown that the linear Lagrange element space on criss-cross meshes and its divergence exhibit spurious eigenvalues when applied in the mixed formulation of the Laplace eigenvalue problem, despite satisfying both the inf–sup condition and ellipticity on the discrete kernel. The lack of a Fortin interpolation is responsible for the spurious eigenvalues produced by the linear Lagrange space. In contrast, results in Boffi et al. (2022) confirm that quartic and higher-order Lagrange elements do not yield spurious eigenvalues on general meshes without nearly singular vertices, including criss-cross meshes as a special case. In this paper, we investigate quadratic and cubic Lagrange elements on criss-cross meshes. We prove the convergence of discrete eigenvalues by fitting the Lagrange elements on criss-cross meshes into a complex and constructing a Fortin interpolation. As a by-product, we construct bounded commuting projections for the finite element Stokes complex, which induces isomorphisms between cohomologies of the continuous and discrete complexes. We provide numerical examples to validate the theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信