瓦瑟斯坦空间上偏微分方程的有限维近似值

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Mehdi Talbi
{"title":"瓦瑟斯坦空间上偏微分方程的有限维近似值","authors":"Mehdi Talbi","doi":"10.1016/j.spa.2024.104445","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a finite-dimensional approximation for a class of partial differential equations on the space of probability measures. These equations are satisfied in the sense of viscosity solutions. The main result states the convergence of the viscosity solutions of the finite-dimensional PDE to the viscosity solutions of the PDE on Wasserstein space, provided that uniqueness holds for the latter, and heavily relies on an adaptation of the Barles &amp; Souganidis monotone scheme (Barles and Souganidis, 1991) to our context, as well as on a key precompactness result for semimartingale measures. We illustrate our convergence result with the example of the Hamilton–Jacobi–Bellman and Bellman–Isaacs equations arising in stochastic control and differential games, and propose an extension to the case of path-dependent PDEs.</p></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"177 ","pages":"Article 104445"},"PeriodicalIF":1.1000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite-dimensional approximation for partial differential equations on Wasserstein space\",\"authors\":\"Mehdi Talbi\",\"doi\":\"10.1016/j.spa.2024.104445\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a finite-dimensional approximation for a class of partial differential equations on the space of probability measures. These equations are satisfied in the sense of viscosity solutions. The main result states the convergence of the viscosity solutions of the finite-dimensional PDE to the viscosity solutions of the PDE on Wasserstein space, provided that uniqueness holds for the latter, and heavily relies on an adaptation of the Barles &amp; Souganidis monotone scheme (Barles and Souganidis, 1991) to our context, as well as on a key precompactness result for semimartingale measures. We illustrate our convergence result with the example of the Hamilton–Jacobi–Bellman and Bellman–Isaacs equations arising in stochastic control and differential games, and propose an extension to the case of path-dependent PDEs.</p></div>\",\"PeriodicalId\":51160,\"journal\":{\"name\":\"Stochastic Processes and their Applications\",\"volume\":\"177 \",\"pages\":\"Article 104445\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastic Processes and their Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304414924001510\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924001510","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了概率计量空间上一类偏微分方程的有限维近似。这些方程满足粘性解的意义。主要结果指出了有限维 PDE 的粘性解对 Wasserstein 空间上的 PDE 的粘性解的收敛性,前提是后者的唯一性成立,这在很大程度上依赖于 Barles & Souganidis 单调方案(Barles and Souganidis, 1991)对我们的背景的适应,以及半鞅量纲的一个关键预紧密性结果。我们以随机控制和微分博弈中出现的 Hamilton-Jacobi-Bellman 和 Bellman-Isaacs 方程为例,说明了我们的收敛结果,并提出了扩展到路径依赖 PDE 的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A finite-dimensional approximation for partial differential equations on Wasserstein space

This paper presents a finite-dimensional approximation for a class of partial differential equations on the space of probability measures. These equations are satisfied in the sense of viscosity solutions. The main result states the convergence of the viscosity solutions of the finite-dimensional PDE to the viscosity solutions of the PDE on Wasserstein space, provided that uniqueness holds for the latter, and heavily relies on an adaptation of the Barles & Souganidis monotone scheme (Barles and Souganidis, 1991) to our context, as well as on a key precompactness result for semimartingale measures. We illustrate our convergence result with the example of the Hamilton–Jacobi–Bellman and Bellman–Isaacs equations arising in stochastic control and differential games, and propose an extension to the case of path-dependent PDEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信