五属豪曲线平面六分模型的显式构建,I

Tomoki Moriya , Momonari Kudo
{"title":"五属豪曲线平面六分模型的显式构建,I","authors":"Tomoki Moriya ,&nbsp;Momonari Kudo","doi":"10.1016/j.jaca.2024.100018","DOIUrl":null,"url":null,"abstract":"<div><p>In the past several years, <em>Howe curves</em> have been studied actively in the field of algebraic curves over fields of positive characteristic. Here, a Howe curve is defined as the desingularization of the fiber product over a projective line of two hyperelliptic curves. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus five. We also determine singularities of our sextic model. Some possible applications such as finding curves over finite fields of special properties are also described.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"11 ","pages":"Article 100018"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000081/pdfft?md5=9004f4fdfe0e247a7ff660ef199ecbd5&pid=1-s2.0-S2772827724000081-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Explicit construction of a plane sextic model for genus-five Howe curves, I\",\"authors\":\"Tomoki Moriya ,&nbsp;Momonari Kudo\",\"doi\":\"10.1016/j.jaca.2024.100018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the past several years, <em>Howe curves</em> have been studied actively in the field of algebraic curves over fields of positive characteristic. Here, a Howe curve is defined as the desingularization of the fiber product over a projective line of two hyperelliptic curves. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus five. We also determine singularities of our sextic model. Some possible applications such as finding curves over finite fields of special properties are also described.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"11 \",\"pages\":\"Article 100018\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000081/pdfft?md5=9004f4fdfe0e247a7ff660ef199ecbd5&pid=1-s2.0-S2772827724000081-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去的几年里,豪曲线在正特征域代数曲线领域得到了积极的研究。在这里,豪曲线被定义为两条超椭圆曲线在投影线上的纤维积的去星化。在本文中,我们为属五的非超椭圆豪曲线构建了一个明确的平面六分模型。我们还确定了六分模型的奇点。本文还描述了一些可能的应用,如寻找具有特殊性质的有限域上的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit construction of a plane sextic model for genus-five Howe curves, I

In the past several years, Howe curves have been studied actively in the field of algebraic curves over fields of positive characteristic. Here, a Howe curve is defined as the desingularization of the fiber product over a projective line of two hyperelliptic curves. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus five. We also determine singularities of our sextic model. Some possible applications such as finding curves over finite fields of special properties are also described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信