五属豪曲线平面六分模型的显式构建,II

Momonari Kudo
{"title":"五属豪曲线平面六分模型的显式构建,II","authors":"Momonari Kudo","doi":"10.1016/j.jaca.2024.100019","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>Howe curve</em> is defined as the normalization of the fiber product over a projective line of two hyperelliptic curves. Howe curves are very useful to produce important classes of curves over fields of positive characteristic, e.g., maximal, superspecial, or supersingular ones. Determining their feasible equations explicitly is a basic problem, and it has been solved in the hyperelliptic case and in the non-hyperelliptic case with genus not greater than 4. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus 5. We also determine the number and type of singularities on our sextic model, and prove that the singularities are generically 4 double points. Our results together with Moriya-Kudo's recent ones imply that for each <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span>, there exists a non-hyperelliptic curve <em>H</em> of genus 5 with <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>H</mi><mo>)</mo><mo>⊃</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that its associated plane sextic has <em>s</em> double points.</p></div>","PeriodicalId":100767,"journal":{"name":"Journal of Computational Algebra","volume":"11 ","pages":"Article 100019"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772827724000093/pdfft?md5=3625c91a9b897ff1d916dbfe0aef7474&pid=1-s2.0-S2772827724000093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Explicit construction of a plane sextic model for genus-five Howe curves, II\",\"authors\":\"Momonari Kudo\",\"doi\":\"10.1016/j.jaca.2024.100019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <em>Howe curve</em> is defined as the normalization of the fiber product over a projective line of two hyperelliptic curves. Howe curves are very useful to produce important classes of curves over fields of positive characteristic, e.g., maximal, superspecial, or supersingular ones. Determining their feasible equations explicitly is a basic problem, and it has been solved in the hyperelliptic case and in the non-hyperelliptic case with genus not greater than 4. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus 5. We also determine the number and type of singularities on our sextic model, and prove that the singularities are generically 4 double points. Our results together with Moriya-Kudo's recent ones imply that for each <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span>, there exists a non-hyperelliptic curve <em>H</em> of genus 5 with <span><math><mrow><mi>Aut</mi></mrow><mo>(</mo><mi>H</mi><mo>)</mo><mo>⊃</mo><msub><mrow><mi>V</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> such that its associated plane sextic has <em>s</em> double points.</p></div>\",\"PeriodicalId\":100767,\"journal\":{\"name\":\"Journal of Computational Algebra\",\"volume\":\"11 \",\"pages\":\"Article 100019\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000093/pdfft?md5=3625c91a9b897ff1d916dbfe0aef7474&pid=1-s2.0-S2772827724000093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772827724000093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Algebra","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772827724000093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

豪曲线的定义是两条超椭圆曲线在投影线上的纤维积的归一化。豪曲线对于产生正特征域上的重要曲线类别非常有用,例如最大曲线、超特殊曲线或超奇异曲线。明确地确定它们的可行方程是一个基本问题,在超椭圆情况和属不大于 4 的非超椭圆情况下,这个问题已经解决。我们还确定了六分模型上奇点的数量和类型,并证明奇点一般为 4 双点。我们的结果和森谷工藤的最新结果意味着,对于每个 s∈{2,3,4,5},都存在一条属 5 的非全椭圆曲线 H,其 Aut(H)⊃V4 使得其相关的平面六分仪有 s 个双点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explicit construction of a plane sextic model for genus-five Howe curves, II

A Howe curve is defined as the normalization of the fiber product over a projective line of two hyperelliptic curves. Howe curves are very useful to produce important classes of curves over fields of positive characteristic, e.g., maximal, superspecial, or supersingular ones. Determining their feasible equations explicitly is a basic problem, and it has been solved in the hyperelliptic case and in the non-hyperelliptic case with genus not greater than 4. In this paper, we construct an explicit plane sextic model for non-hyperelliptic Howe curves of genus 5. We also determine the number and type of singularities on our sextic model, and prove that the singularities are generically 4 double points. Our results together with Moriya-Kudo's recent ones imply that for each s{2,3,4,5}, there exists a non-hyperelliptic curve H of genus 5 with Aut(H)V4 such that its associated plane sextic has s double points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信