{"title":"关于天然生物碱胡椒碱的分子动力学和量子化学研究","authors":"","doi":"10.1080/10406638.2023.2237631","DOIUrl":null,"url":null,"abstract":"<div><p>Piperine (a naturally occurring alkaloid), is a biologically active natural product belonging to the alkaloid series of compounds. In this study, the spectral characterization of piperine isolated from black pepper has been performed using FT-IR, <sup>1</sup>H-NMR, and <sup>13</sup>C-NMR. To explain spectral features, we have calculated the vibrational frequencies of the optimized structure of piperine using the B3LYP/6-311 + G(d,p) level of theory and NMR spectra using the GIAO method. All vibrational modes of the title molecule have been assigned based on potential energy distribution. The calculated scaled wavenumbers and NMR chemical shifts show good agreement with the experimental FT-IR and NMR data, respectively. To assess the bioactivity of piperine, we have first performed molecular docking using the ITK receptor and subsequently, the molecular dynamics simulation of the resulting complex for 100 ns. The results suggest the potential of piperine for possible anti-inflammatory action.</p></div>","PeriodicalId":20303,"journal":{"name":"Polycyclic Aromatic Compounds","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecular Dynamics and Quantum Chemical Studies on Piperine, a Naturally Occurring Alkaloid\",\"authors\":\"\",\"doi\":\"10.1080/10406638.2023.2237631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Piperine (a naturally occurring alkaloid), is a biologically active natural product belonging to the alkaloid series of compounds. In this study, the spectral characterization of piperine isolated from black pepper has been performed using FT-IR, <sup>1</sup>H-NMR, and <sup>13</sup>C-NMR. To explain spectral features, we have calculated the vibrational frequencies of the optimized structure of piperine using the B3LYP/6-311 + G(d,p) level of theory and NMR spectra using the GIAO method. All vibrational modes of the title molecule have been assigned based on potential energy distribution. The calculated scaled wavenumbers and NMR chemical shifts show good agreement with the experimental FT-IR and NMR data, respectively. To assess the bioactivity of piperine, we have first performed molecular docking using the ITK receptor and subsequently, the molecular dynamics simulation of the resulting complex for 100 ns. The results suggest the potential of piperine for possible anti-inflammatory action.</p></div>\",\"PeriodicalId\":20303,\"journal\":{\"name\":\"Polycyclic Aromatic Compounds\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polycyclic Aromatic Compounds\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S104066382301730X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polycyclic Aromatic Compounds","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S104066382301730X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Molecular Dynamics and Quantum Chemical Studies on Piperine, a Naturally Occurring Alkaloid
Piperine (a naturally occurring alkaloid), is a biologically active natural product belonging to the alkaloid series of compounds. In this study, the spectral characterization of piperine isolated from black pepper has been performed using FT-IR, 1H-NMR, and 13C-NMR. To explain spectral features, we have calculated the vibrational frequencies of the optimized structure of piperine using the B3LYP/6-311 + G(d,p) level of theory and NMR spectra using the GIAO method. All vibrational modes of the title molecule have been assigned based on potential energy distribution. The calculated scaled wavenumbers and NMR chemical shifts show good agreement with the experimental FT-IR and NMR data, respectively. To assess the bioactivity of piperine, we have first performed molecular docking using the ITK receptor and subsequently, the molecular dynamics simulation of the resulting complex for 100 ns. The results suggest the potential of piperine for possible anti-inflammatory action.
期刊介绍:
The purpose of Polycyclic Aromatic Compounds is to provide an international and interdisciplinary forum for all aspects of research related to polycyclic aromatic compounds (PAC). Topics range from fundamental research in chemistry (including synthetic and theoretical chemistry) and physics (including astrophysics), as well as thermodynamics, spectroscopy, analytical methods, and biology to applied studies in environmental science, biochemistry, toxicology, and industry. Polycyclic Aromatic Compounds has an outstanding Editorial Board and offers a rapid and efficient peer review process, as well as a flexible open access policy.