论基于事件的数字控制器对控制非线性系统的稳健性

IF 4.8 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
{"title":"论基于事件的数字控制器对控制非线性系统的稳健性","authors":"","doi":"10.1016/j.automatica.2024.111826","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the robust digital stabilization problem of nonlinear systems is investigated. In particular, a methodology for the design of robust quantized sampled-data stabilizers updated via an event-triggered mechanism is provided for time-varying control-affine nonlinear systems affected by actuation disturbances and measurement noises. The notion of time-varying steepest descent feedback (TSDF), continuous or not, and the Input-to-State Stability (ISS) redesign methodology are used for the development of the proposed robust event-based digital controller. Under the assumption that the actuation disturbances and measurement noises are bounded with a-priori known bounds and that the amplitude of the measurement noises satisfies a certain condition related to the new added robustification term, the following result is proved: there exist a suitably fast sampling and an accurate quantization of the input/output channels such that the digital implementation of robustified TSDF controllers, updated through a proposed event-triggered mechanism, ensures semi-global practical stability of the related closed-loop system regardless of the above uncertainties. In the methodology here proposed, time-varying sampling periods and the non-uniform quantization of the input/output channels are allowed. Moreover, the theory here developed includes the analysis of the intersampling system behaviour. Possible discontinuities in the function describing the TSDF at hand are also managed. The provided results are validated through a numerical example.</p></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On robustification of digital event-based controllers for control-affine nonlinear systems\",\"authors\":\"\",\"doi\":\"10.1016/j.automatica.2024.111826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the robust digital stabilization problem of nonlinear systems is investigated. In particular, a methodology for the design of robust quantized sampled-data stabilizers updated via an event-triggered mechanism is provided for time-varying control-affine nonlinear systems affected by actuation disturbances and measurement noises. The notion of time-varying steepest descent feedback (TSDF), continuous or not, and the Input-to-State Stability (ISS) redesign methodology are used for the development of the proposed robust event-based digital controller. Under the assumption that the actuation disturbances and measurement noises are bounded with a-priori known bounds and that the amplitude of the measurement noises satisfies a certain condition related to the new added robustification term, the following result is proved: there exist a suitably fast sampling and an accurate quantization of the input/output channels such that the digital implementation of robustified TSDF controllers, updated through a proposed event-triggered mechanism, ensures semi-global practical stability of the related closed-loop system regardless of the above uncertainties. In the methodology here proposed, time-varying sampling periods and the non-uniform quantization of the input/output channels are allowed. Moreover, the theory here developed includes the analysis of the intersampling system behaviour. Possible discontinuities in the function describing the TSDF at hand are also managed. The provided results are validated through a numerical example.</p></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109824003200\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109824003200","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非线性系统的鲁棒数字稳定问题。特别是,针对受执行干扰和测量噪声影响的时变控制-非线性系统,提供了一种通过事件触发机制更新的鲁棒量化采样数据稳定器的设计方法。在开发所提出的基于事件的鲁棒数字控制器时,使用了连续或非连续的时变最陡下降反馈(TSDF)概念和输入到状态稳定性(ISS)重新设计方法。在假定执行干扰和测量噪声有先验已知的边界,且测量噪声的振幅满足与新添加的鲁棒化项相关的特定条件的前提下,证明了以下结果:存在适当的快速采样和输入/输出通道的精确量化,这样,通过所提议的事件触发机制更新的鲁棒化 TSDF 控制器的数字实现可确保相关闭环系统的半全局实际稳定性,而不受上述不确定性的影响。在本文提出的方法中,允许时变采样周期和输入/输出通道的非均匀量化。此外,本文提出的理论还包括对采样间系统行为的分析。此外,还对描述当前 TSDF 的函数中可能存在的不连续性进行了管理。所提供的结果通过一个数值示例进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On robustification of digital event-based controllers for control-affine nonlinear systems

In this paper, the robust digital stabilization problem of nonlinear systems is investigated. In particular, a methodology for the design of robust quantized sampled-data stabilizers updated via an event-triggered mechanism is provided for time-varying control-affine nonlinear systems affected by actuation disturbances and measurement noises. The notion of time-varying steepest descent feedback (TSDF), continuous or not, and the Input-to-State Stability (ISS) redesign methodology are used for the development of the proposed robust event-based digital controller. Under the assumption that the actuation disturbances and measurement noises are bounded with a-priori known bounds and that the amplitude of the measurement noises satisfies a certain condition related to the new added robustification term, the following result is proved: there exist a suitably fast sampling and an accurate quantization of the input/output channels such that the digital implementation of robustified TSDF controllers, updated through a proposed event-triggered mechanism, ensures semi-global practical stability of the related closed-loop system regardless of the above uncertainties. In the methodology here proposed, time-varying sampling periods and the non-uniform quantization of the input/output channels are allowed. Moreover, the theory here developed includes the analysis of the intersampling system behaviour. Possible discontinuities in the function describing the TSDF at hand are also managed. The provided results are validated through a numerical example.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automatica
Automatica 工程技术-工程:电子与电气
CiteScore
10.70
自引率
7.80%
发文量
617
审稿时长
5 months
期刊介绍: Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field. After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience. Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信