汤普森群和昆兹代数的不可还原毕达哥拉斯表征

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arnaud Brothier , Dilshan Wijesena
{"title":"汤普森群和昆兹代数的不可还原毕达哥拉斯表征","authors":"Arnaud Brothier ,&nbsp;Dilshan Wijesena","doi":"10.1016/j.aim.2024.109871","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce the Pythagorean dimension: a natural number (or infinity) for all representations of the Cuntz algebra and certain unitary representations of the Richard Thompson groups called Pythagorean. For each finite Pythagorean dimension <em>d</em> we completely classify (in a functorial manner) all such representations using finite dimensional linear algebra. Their irreducible classes form a nice moduli space: a real manifold of dimension <span><math><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span>. Apart from a finite disjoint union of circles, each point of the manifold corresponds to an irreducible unitary representation of Thompson's group <em>F</em> (which extends to the other Thompson groups and the Cuntz algebra) that is not monomial. The remaining circles provide monomial representations which we previously fully described and classified. We translate in our language a large number of previous results in the literature. We explain how our techniques extend them.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0001870824003864/pdfft?md5=f7ff86adb8bd83e5426f196f622bf16f&pid=1-s2.0-S0001870824003864-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Irreducible Pythagorean representations of R. Thompson's groups and of the Cuntz algebra\",\"authors\":\"Arnaud Brothier ,&nbsp;Dilshan Wijesena\",\"doi\":\"10.1016/j.aim.2024.109871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce the Pythagorean dimension: a natural number (or infinity) for all representations of the Cuntz algebra and certain unitary representations of the Richard Thompson groups called Pythagorean. For each finite Pythagorean dimension <em>d</em> we completely classify (in a functorial manner) all such representations using finite dimensional linear algebra. Their irreducible classes form a nice moduli space: a real manifold of dimension <span><math><mn>2</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn></math></span>. Apart from a finite disjoint union of circles, each point of the manifold corresponds to an irreducible unitary representation of Thompson's group <em>F</em> (which extends to the other Thompson groups and the Cuntz algebra) that is not monomial. The remaining circles provide monomial representations which we previously fully described and classified. We translate in our language a large number of previous results in the literature. We explain how our techniques extend them.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003864/pdfft?md5=f7ff86adb8bd83e5426f196f622bf16f&pid=1-s2.0-S0001870824003864-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001870824003864\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870824003864","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了毕达哥拉斯维度:这是一个自然数(或无穷大),适用于康兹代数的所有表示和理查德-汤普森群的某些单元表示,称为毕达哥拉斯。对于每个有限毕达哥拉斯维数 d,我们都会使用有限维线性代数对所有此类表示进行完全分类(以函数式的方式)。它们的不可还原类构成了一个漂亮的模空间:维数为 2d2+1 的实流形。除了一个有限不相联的圆之外,流形的每个点都对应于汤普森群 F 的一个不可还原单元表示(可扩展到其他汤普森群和 Cuntz 代数),而这个表示不是单项式的。其余的圆提供了我们之前充分描述和分类过的单项式表示。我们用自己的语言翻译了大量以前的文献成果。我们将解释我们的技术是如何扩展它们的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irreducible Pythagorean representations of R. Thompson's groups and of the Cuntz algebra

We introduce the Pythagorean dimension: a natural number (or infinity) for all representations of the Cuntz algebra and certain unitary representations of the Richard Thompson groups called Pythagorean. For each finite Pythagorean dimension d we completely classify (in a functorial manner) all such representations using finite dimensional linear algebra. Their irreducible classes form a nice moduli space: a real manifold of dimension 2d2+1. Apart from a finite disjoint union of circles, each point of the manifold corresponds to an irreducible unitary representation of Thompson's group F (which extends to the other Thompson groups and the Cuntz algebra) that is not monomial. The remaining circles provide monomial representations which we previously fully described and classified. We translate in our language a large number of previous results in the literature. We explain how our techniques extend them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信