基于偏差补偿遗忘因子递推最小二乘法的在线电池模型参数识别方法

{"title":"基于偏差补偿遗忘因子递推最小二乘法的在线电池模型参数识别方法","authors":"","doi":"10.1016/j.geits.2024.100207","DOIUrl":null,"url":null,"abstract":"<div><p>Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery, thereby influencing safety of entire electric vehicles. Precise estimation of battery model parameters using key measured signals is essential. However, measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors, potentially diminishing model estimation accuracy. Addressing the challenge of accuracy reduction caused by noise, this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares (BCFFRLS) method. Initially, a variational error model is crafted to estimate the average weighted variance of random noise. Subsequently, an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors, compensating for bias in the parameter estimates. To assess the proposed method's effectiveness in improving parameter identification accuracy, lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule (UDDS), Dynamic Stress Test (DST), and Hybrid Pulse Power Characterization (HPPC). The proposed method, alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares (FFRLS)—was employed for battery model parameter identification. Comparative analysis reveals substantial improvements, with the mean absolute error reduced by 25%, 28%, and 15%, and the root mean square error reduced by 25.1%, 42.7%, and 15.9% in UDDS, HPPC, and DST operating conditions, respectively, when compared to the FFRLS method.</p></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773153724000598/pdfft?md5=999324213bcb12e2532de767f001b72e&pid=1-s2.0-S2773153724000598-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Online battery model parameters identification approach based on bias-compensated forgetting factor recursive least squares\",\"authors\":\"\",\"doi\":\"10.1016/j.geits.2024.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery, thereby influencing safety of entire electric vehicles. Precise estimation of battery model parameters using key measured signals is essential. However, measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors, potentially diminishing model estimation accuracy. Addressing the challenge of accuracy reduction caused by noise, this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares (BCFFRLS) method. Initially, a variational error model is crafted to estimate the average weighted variance of random noise. Subsequently, an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors, compensating for bias in the parameter estimates. To assess the proposed method's effectiveness in improving parameter identification accuracy, lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule (UDDS), Dynamic Stress Test (DST), and Hybrid Pulse Power Characterization (HPPC). The proposed method, alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares (FFRLS)—was employed for battery model parameter identification. Comparative analysis reveals substantial improvements, with the mean absolute error reduced by 25%, 28%, and 15%, and the root mean square error reduced by 25.1%, 42.7%, and 15.9% in UDDS, HPPC, and DST operating conditions, respectively, when compared to the FFRLS method.</p></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000598/pdfft?md5=999324213bcb12e2532de767f001b72e&pid=1-s2.0-S2773153724000598-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000598\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池模型的准确性是忠实反映电池实际状态的关键,从而影响整个电动汽车的安全性。利用关键测量信号精确估算电池模型参数至关重要。然而,由于复杂的实际操作环境和传感器误差,测量信号不可避免地会带有随机噪声,这可能会降低模型估计的准确性。为了应对噪声造成的精度降低这一挑战,本文介绍了一种偏差补偿遗忘因子递推最小二乘法(BCFFRLS)。首先,建立一个变分误差模型来估计随机噪声的平均加权方差。随后,设计一个增强矩阵,利用增强和扩展参数向量计算偏差项,补偿参数估计中的偏差。为了评估所提出的方法在提高参数识别准确性方面的有效性,我们在三种测试条件下进行了锂离子电池实验--城市测功机驾驶时间表(UDDS)、动态应力测试(DST)和混合脉冲功率表征(HPPC)。提出的方法与两种对比方法--离线识别方法和遗忘因子递归最小二乘法(FFRLS)--一起用于电池模型参数识别。对比分析表明,与 FFRLS 方法相比,在 UDDS、HPPC 和 DST 工作条件下,平均绝对误差分别减少了 25%、28% 和 15%,均方根误差分别减少了 25.1%、42.7% 和 15.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Online battery model parameters identification approach based on bias-compensated forgetting factor recursive least squares

Online battery model parameters identification approach based on bias-compensated forgetting factor recursive least squares

Accuracy of a lithium-ion battery model is pivotal in faithfully representing actual state of battery, thereby influencing safety of entire electric vehicles. Precise estimation of battery model parameters using key measured signals is essential. However, measured signals inevitably carry random noise due to complex real-world operating environments and sensor errors, potentially diminishing model estimation accuracy. Addressing the challenge of accuracy reduction caused by noise, this paper introduces a Bias-Compensated Forgetting Factor Recursive Least Squares (BCFFRLS) method. Initially, a variational error model is crafted to estimate the average weighted variance of random noise. Subsequently, an augmentation matrix is devised to calculate the bias term using augmented and extended parameter vectors, compensating for bias in the parameter estimates. To assess the proposed method's effectiveness in improving parameter identification accuracy, lithium-ion battery experiments were conducted in three test conditions—Urban Dynamometer Driving Schedule (UDDS), Dynamic Stress Test (DST), and Hybrid Pulse Power Characterization (HPPC). The proposed method, alongside two contrasting methods—the offline identification method and Forgetting Factor Recursive Least Squares (FFRLS)—was employed for battery model parameter identification. Comparative analysis reveals substantial improvements, with the mean absolute error reduced by 25%, 28%, and 15%, and the root mean square error reduced by 25.1%, 42.7%, and 15.9% in UDDS, HPPC, and DST operating conditions, respectively, when compared to the FFRLS method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信