{"title":"针对神经退行性疾病中的氧化应激:抑制 PCSK9 的新作用?","authors":"Lauren M. Park, Pal Pacher and Falk W. Lohoff*, ","doi":"10.1021/acschemneuro.4c0029910.1021/acschemneuro.4c00299","DOIUrl":null,"url":null,"abstract":"<p >Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein that regulates cholesterol levels by lysosomal low-density lipoprotein receptor (LDLR) degradation and has recently been associated with the production of neuronal oxidative stress and age-associated cardiovascular dysfunction. Since increased oxidative stress and vascular dysfunction are implicated in the pathology of aging and various neurodegenerative disorders, targeting PCSK9 may offer a promising therapeutic avenue for addressing these conditions. While the precise mechanisms through which PCSK9 contributes to vascular and neuronal oxidative stress in the brain remain elusive, preclinical studies have highlighted a neuroprotective effect linked to PCSK9 inhibition. This inhibition has shown promise in reducing oxidative stress, mitigating neuroinflammation, and alleviating neuropathological changes, thus underscoring the therapeutic potential of this approach in addressing neurodegenerative conditions.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":"15 15","pages":"2662–2664 2662–2664"},"PeriodicalIF":3.9000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting Oxidative Stress in Neurodegenerative Disorders: A Novel Role for PCSK9 Inhibition?\",\"authors\":\"Lauren M. Park, Pal Pacher and Falk W. Lohoff*, \",\"doi\":\"10.1021/acschemneuro.4c0029910.1021/acschemneuro.4c00299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein that regulates cholesterol levels by lysosomal low-density lipoprotein receptor (LDLR) degradation and has recently been associated with the production of neuronal oxidative stress and age-associated cardiovascular dysfunction. Since increased oxidative stress and vascular dysfunction are implicated in the pathology of aging and various neurodegenerative disorders, targeting PCSK9 may offer a promising therapeutic avenue for addressing these conditions. While the precise mechanisms through which PCSK9 contributes to vascular and neuronal oxidative stress in the brain remain elusive, preclinical studies have highlighted a neuroprotective effect linked to PCSK9 inhibition. This inhibition has shown promise in reducing oxidative stress, mitigating neuroinflammation, and alleviating neuropathological changes, thus underscoring the therapeutic potential of this approach in addressing neurodegenerative conditions.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\"15 15\",\"pages\":\"2662–2664 2662–2664\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00299\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acschemneuro.4c00299","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Targeting Oxidative Stress in Neurodegenerative Disorders: A Novel Role for PCSK9 Inhibition?
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protein that regulates cholesterol levels by lysosomal low-density lipoprotein receptor (LDLR) degradation and has recently been associated with the production of neuronal oxidative stress and age-associated cardiovascular dysfunction. Since increased oxidative stress and vascular dysfunction are implicated in the pathology of aging and various neurodegenerative disorders, targeting PCSK9 may offer a promising therapeutic avenue for addressing these conditions. While the precise mechanisms through which PCSK9 contributes to vascular and neuronal oxidative stress in the brain remain elusive, preclinical studies have highlighted a neuroprotective effect linked to PCSK9 inhibition. This inhibition has shown promise in reducing oxidative stress, mitigating neuroinflammation, and alleviating neuropathological changes, thus underscoring the therapeutic potential of this approach in addressing neurodegenerative conditions.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research