Andrea Chicca, Daniel Bátora, Christoph Ullmer, Antonello Caruso, Sabine Grüner, Jürgen Fingerle, Thomas Hartung, Roland Degen, Matthias Müller, Uwe Grether, Pal Pacher* and Jürg Gertsch*,
{"title":"一种用于体内研究的高效力、口服生物可用吡唑衍生大麻素 CB2 受体选择性全激动剂","authors":"Andrea Chicca, Daniel Bátora, Christoph Ullmer, Antonello Caruso, Sabine Grüner, Jürgen Fingerle, Thomas Hartung, Roland Degen, Matthias Müller, Uwe Grether, Pal Pacher* and Jürg Gertsch*, ","doi":"10.1021/acsptsci.4c0026910.1021/acsptsci.4c00269","DOIUrl":null,"url":null,"abstract":"<p >The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation <i>in vivo</i>, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for <i>in vivo</i> studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (<i>K</i><sub>i</sub> 0.13–1.81 nM, depending on species) and a peripherally restricted action due to <i>P</i>-glycoprotein-mediated efflux from the brain. <sup>3</sup>H and <sup>14</sup>C labeled RNB-61 showed apparent <i>K</i><sub>d</sub> values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets <i>in vitro</i>, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical <i>in vivo</i> studies with superior biophysical and PK properties over generally used CB2R ligands.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"7 8","pages":"2424–2438 2424–2438"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00269","citationCount":"0","resultStr":"{\"title\":\"A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies\",\"authors\":\"Andrea Chicca, Daniel Bátora, Christoph Ullmer, Antonello Caruso, Sabine Grüner, Jürgen Fingerle, Thomas Hartung, Roland Degen, Matthias Müller, Uwe Grether, Pal Pacher* and Jürg Gertsch*, \",\"doi\":\"10.1021/acsptsci.4c0026910.1021/acsptsci.4c00269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation <i>in vivo</i>, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for <i>in vivo</i> studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (<i>K</i><sub>i</sub> 0.13–1.81 nM, depending on species) and a peripherally restricted action due to <i>P</i>-glycoprotein-mediated efflux from the brain. <sup>3</sup>H and <sup>14</sup>C labeled RNB-61 showed apparent <i>K</i><sub>d</sub> values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets <i>in vitro</i>, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical <i>in vivo</i> studies with superior biophysical and PK properties over generally used CB2R ligands.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"7 8\",\"pages\":\"2424–2438 2424–2438\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (Ki 0.13–1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent Kd values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.