离散观测高维函数数据的均值和协方差估计:收敛速度和观测制度的划分

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Alexander Petersen
{"title":"离散观测高维函数数据的均值和协方差估计:收敛速度和观测制度的划分","authors":"Alexander Petersen","doi":"10.1016/j.jmva.2024.105355","DOIUrl":null,"url":null,"abstract":"<div><p>Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which <span><math><mi>p</mi></math></span>, the number of curves per subject, is often much larger than the sample size <span><math><mi>n</mi></math></span>. In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> across curves <span><math><mi>j</mi></math></span> and subjects <span><math><mi>i</mi></math></span>, where the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> vary with <span><math><mi>n</mi></math></span>. Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> relative to <span><math><mi>p</mi></math></span> and <span><math><mi>n</mi></math></span> divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of <span><math><msup><mrow><mfenced><mrow><mo>log</mo><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> being attainable in the latter two.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean and covariance estimation for discretely observed high-dimensional functional data: Rates of convergence and division of observational regimes\",\"authors\":\"Alexander Petersen\",\"doi\":\"10.1016/j.jmva.2024.105355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which <span><math><mi>p</mi></math></span>, the number of curves per subject, is often much larger than the sample size <span><math><mi>n</mi></math></span>. In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> across curves <span><math><mi>j</mi></math></span> and subjects <span><math><mi>i</mi></math></span>, where the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> vary with <span><math><mi>n</mi></math></span>. Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> relative to <span><math><mi>p</mi></math></span> and <span><math><mi>n</mi></math></span> divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of <span><math><msup><mrow><mfenced><mrow><mo>log</mo><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> being attainable in the latter two.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000629\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000629","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

估计功能数据的均值和协方差参数是一项关键任务,而局部线性平滑是一种常用的选择。近年来,许多科学领域正在产生多变量函数数据,其中每个受试者的曲线数 p 往往远大于样本数 n。在这种高维函数数据设置中,许多已开发的方法依赖于对未知均值函数以及自协方差和交协方差函数的初步估计。本文研究了局部线性估计器的收敛率,即在 L2 和均匀度量下,分别对均值函数和协方差函数的跨分量和成对分量的最大误差进行估计。局部线性估计器采用通用加权方案,该方案可以调整曲线 j 和受试者 i 之间不同数量的离散观测值 Nij,其中 Nij 随 n 变化。理论结果利用了函数数据集中不等式的新应用,并证明了与单变量函数数据类似,Nij 相对于 p 和 n 的阶数将高维函数数据分为三种情况(稀疏、密集和超密集),在后两种情况下可达到 log(p)/n1/2 的高维参数收敛速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mean and covariance estimation for discretely observed high-dimensional functional data: Rates of convergence and division of observational regimes

Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which p, the number of curves per subject, is often much larger than the sample size n. In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both L2 and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations Nij across curves j and subjects i, where the Nij vary with n. Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the Nij relative to p and n divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of log(p)/n1/2 being attainable in the latter two.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信