{"title":"离散观测高维函数数据的均值和协方差估计:收敛速度和观测制度的划分","authors":"Alexander Petersen","doi":"10.1016/j.jmva.2024.105355","DOIUrl":null,"url":null,"abstract":"<div><p>Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which <span><math><mi>p</mi></math></span>, the number of curves per subject, is often much larger than the sample size <span><math><mi>n</mi></math></span>. In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> across curves <span><math><mi>j</mi></math></span> and subjects <span><math><mi>i</mi></math></span>, where the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> vary with <span><math><mi>n</mi></math></span>. Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> relative to <span><math><mi>p</mi></math></span> and <span><math><mi>n</mi></math></span> divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of <span><math><msup><mrow><mfenced><mrow><mo>log</mo><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> being attainable in the latter two.</p></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"204 ","pages":"Article 105355"},"PeriodicalIF":1.4000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mean and covariance estimation for discretely observed high-dimensional functional data: Rates of convergence and division of observational regimes\",\"authors\":\"Alexander Petersen\",\"doi\":\"10.1016/j.jmva.2024.105355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which <span><math><mi>p</mi></math></span>, the number of curves per subject, is often much larger than the sample size <span><math><mi>n</mi></math></span>. In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> across curves <span><math><mi>j</mi></math></span> and subjects <span><math><mi>i</mi></math></span>, where the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> vary with <span><math><mi>n</mi></math></span>. Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub></math></span> relative to <span><math><mi>p</mi></math></span> and <span><math><mi>n</mi></math></span> divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of <span><math><msup><mrow><mfenced><mrow><mo>log</mo><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow><mo>/</mo><mi>n</mi></mrow></mfenced></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></math></span> being attainable in the latter two.</p></div>\",\"PeriodicalId\":16431,\"journal\":{\"name\":\"Journal of Multivariate Analysis\",\"volume\":\"204 \",\"pages\":\"Article 105355\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multivariate Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0047259X24000629\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X24000629","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
估计功能数据的均值和协方差参数是一项关键任务,而局部线性平滑是一种常用的选择。近年来,许多科学领域正在产生多变量函数数据,其中每个受试者的曲线数 p 往往远大于样本数 n。在这种高维函数数据设置中,许多已开发的方法依赖于对未知均值函数以及自协方差和交协方差函数的初步估计。本文研究了局部线性估计器的收敛率,即在 L2 和均匀度量下,分别对均值函数和协方差函数的跨分量和成对分量的最大误差进行估计。局部线性估计器采用通用加权方案,该方案可以调整曲线 j 和受试者 i 之间不同数量的离散观测值 Nij,其中 Nij 随 n 变化。理论结果利用了函数数据集中不等式的新应用,并证明了与单变量函数数据类似,Nij 相对于 p 和 n 的阶数将高维函数数据分为三种情况(稀疏、密集和超密集),在后两种情况下可达到 log(p)/n1/2 的高维参数收敛速率。
Mean and covariance estimation for discretely observed high-dimensional functional data: Rates of convergence and division of observational regimes
Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which , the number of curves per subject, is often much larger than the sample size . In this setting of high-dimensional functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in terms of the maximal error across components and pairs of components for mean and covariance functions, respectively, in both and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust for differing numbers of discrete observations across curves and subjects , where the vary with . Particular attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes. The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate that, similar to univariate functional data, the order of the relative to and divides high-dimensional functional data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of being attainable in the latter two.
期刊介绍:
Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data.
The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of
Copula modeling
Functional data analysis
Graphical modeling
High-dimensional data analysis
Image analysis
Multivariate extreme-value theory
Sparse modeling
Spatial statistics.