{"title":"在捣固过程中实时检测轨道调整时无砟道床的横向阻力:基于轨道移动操作的新型测试方法","authors":"","doi":"10.1016/j.trgeo.2024.101332","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time detection of the mechanical state of ballast bed during the tamping operation in railway maintenance is of great significance for improving the effectiveness of operations. In this study, a novel test method named the track shifting test was proposed based on the track realigning operation of the tamping vehicle. The track panel was pushed by the shifting device. Moreover, the lateral resistance of ballast bed was reflected through easily measured indexes. An accurate coupling model of the shifting device and the ballasted track was constructed. Based on the model, the mechanical response of ballast and the track panel induced by the shifting load was analyzed. Results indicated that at an effective loading displacement of <span><math><mrow><mn>2</mn><mrow><mspace></mspace><mtext>mm</mtext></mrow></mrow></math></span>, the lateral resistance of ballast bed within a detectable range of up to five sleepers can be inverted by the shifting force and the displacement of sleepers. A machine learning model was established to obtain the mapping relationship between the shifting force, the displacement of sleepers, and the lateral resistance of ballast bed. Therefore, real-time detection of the lateral resistance was achieved by combining the proposed test method and the machine learning algorithm. This study can contribute to the synchronous detection of the mechanical state of ballast bed during tamping operation.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time detection of the lateral resistance of ballast bed during track realigning in tamping: A novel test method based on track shifting operation\",\"authors\":\"\",\"doi\":\"10.1016/j.trgeo.2024.101332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-time detection of the mechanical state of ballast bed during the tamping operation in railway maintenance is of great significance for improving the effectiveness of operations. In this study, a novel test method named the track shifting test was proposed based on the track realigning operation of the tamping vehicle. The track panel was pushed by the shifting device. Moreover, the lateral resistance of ballast bed was reflected through easily measured indexes. An accurate coupling model of the shifting device and the ballasted track was constructed. Based on the model, the mechanical response of ballast and the track panel induced by the shifting load was analyzed. Results indicated that at an effective loading displacement of <span><math><mrow><mn>2</mn><mrow><mspace></mspace><mtext>mm</mtext></mrow></mrow></math></span>, the lateral resistance of ballast bed within a detectable range of up to five sleepers can be inverted by the shifting force and the displacement of sleepers. A machine learning model was established to obtain the mapping relationship between the shifting force, the displacement of sleepers, and the lateral resistance of ballast bed. Therefore, real-time detection of the lateral resistance was achieved by combining the proposed test method and the machine learning algorithm. This study can contribute to the synchronous detection of the mechanical state of ballast bed during tamping operation.</p></div>\",\"PeriodicalId\":56013,\"journal\":{\"name\":\"Transportation Geotechnics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214391224001533\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001533","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Real-time detection of the lateral resistance of ballast bed during track realigning in tamping: A novel test method based on track shifting operation
Real-time detection of the mechanical state of ballast bed during the tamping operation in railway maintenance is of great significance for improving the effectiveness of operations. In this study, a novel test method named the track shifting test was proposed based on the track realigning operation of the tamping vehicle. The track panel was pushed by the shifting device. Moreover, the lateral resistance of ballast bed was reflected through easily measured indexes. An accurate coupling model of the shifting device and the ballasted track was constructed. Based on the model, the mechanical response of ballast and the track panel induced by the shifting load was analyzed. Results indicated that at an effective loading displacement of , the lateral resistance of ballast bed within a detectable range of up to five sleepers can be inverted by the shifting force and the displacement of sleepers. A machine learning model was established to obtain the mapping relationship between the shifting force, the displacement of sleepers, and the lateral resistance of ballast bed. Therefore, real-time detection of the lateral resistance was achieved by combining the proposed test method and the machine learning algorithm. This study can contribute to the synchronous detection of the mechanical state of ballast bed during tamping operation.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.