使用无监督和有监督深度学习模型的基于联合学习的物联网入侵检测系统

Babatunde Olanrewaju-George , Bernardi Pranggono
{"title":"使用无监督和有监督深度学习模型的基于联合学习的物联网入侵检测系统","authors":"Babatunde Olanrewaju-George ,&nbsp;Bernardi Pranggono","doi":"10.1016/j.csa.2024.100068","DOIUrl":null,"url":null,"abstract":"<div><p>The adoption of the Internet of Things (IoT) in our technology-driven society is hindered by security and data privacy challenges. To address these issues, Artificial Intelligence (AI) techniques such as Machine Learning (ML) and Deep Learning (DL) can be applied to build Intrusion Detection Systems (IDS) that help securing IoT networks. Federated Learning (FL) is a decentralized approach that can enhance performance and privacy of the data by training IDS on individual connected devices. This study proposes the use of unsupervised and supervised DL models trained via FL to develop IDS for IoT devices. The performance of FL-trained models is compared to models trained via non-FL using the N-BaIoT dataset of nine IoT devices. To improve the accuracy of DL models, a randomized search hyperparameter optimization is performed. Various performance metrics are used to evaluate the prediction results. The results indicate that the unsupervised AutoEncoder (AE) model trained via FL is the best overall in terms of all metrics, based on testing both FL and non-FL trained models on all nine IoT devices.</p></div>","PeriodicalId":100351,"journal":{"name":"Cyber Security and Applications","volume":"3 ","pages":"Article 100068"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772918424000341/pdfft?md5=48d2bf0e58e547f6db91e198b3e50c2e&pid=1-s2.0-S2772918424000341-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Federated learning-based intrusion detection system for the internet of things using unsupervised and supervised deep learning models\",\"authors\":\"Babatunde Olanrewaju-George ,&nbsp;Bernardi Pranggono\",\"doi\":\"10.1016/j.csa.2024.100068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adoption of the Internet of Things (IoT) in our technology-driven society is hindered by security and data privacy challenges. To address these issues, Artificial Intelligence (AI) techniques such as Machine Learning (ML) and Deep Learning (DL) can be applied to build Intrusion Detection Systems (IDS) that help securing IoT networks. Federated Learning (FL) is a decentralized approach that can enhance performance and privacy of the data by training IDS on individual connected devices. This study proposes the use of unsupervised and supervised DL models trained via FL to develop IDS for IoT devices. The performance of FL-trained models is compared to models trained via non-FL using the N-BaIoT dataset of nine IoT devices. To improve the accuracy of DL models, a randomized search hyperparameter optimization is performed. Various performance metrics are used to evaluate the prediction results. The results indicate that the unsupervised AutoEncoder (AE) model trained via FL is the best overall in terms of all metrics, based on testing both FL and non-FL trained models on all nine IoT devices.</p></div>\",\"PeriodicalId\":100351,\"journal\":{\"name\":\"Cyber Security and Applications\",\"volume\":\"3 \",\"pages\":\"Article 100068\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000341/pdfft?md5=48d2bf0e58e547f6db91e198b3e50c2e&pid=1-s2.0-S2772918424000341-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyber Security and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772918424000341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyber Security and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772918424000341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在技术驱动的社会中,物联网(IoT)的应用受到了安全和数据隐私挑战的阻碍。为了解决这些问题,机器学习(ML)和深度学习(DL)等人工智能(AI)技术可用于构建入侵检测系统(IDS),帮助确保物联网网络的安全。联合学习(FL)是一种分散式方法,可通过在单个联网设备上训练 IDS 来提高性能和数据隐私。本研究建议使用通过 FL 训练的无监督和有监督 DL 模型,为物联网设备开发 IDS。使用由九个物联网设备组成的 N-BaIoT 数据集,将 FL 训练模型的性能与非 FL 训练模型的性能进行了比较。为了提高 DL 模型的准确性,进行了随机搜索超参数优化。各种性能指标被用来评估预测结果。结果表明,基于在所有九个物联网设备上测试 FL 和非 FL 训练的模型,通过 FL 训练的无监督自动编码器(AE)模型在所有指标方面都是最好的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Federated learning-based intrusion detection system for the internet of things using unsupervised and supervised deep learning models

The adoption of the Internet of Things (IoT) in our technology-driven society is hindered by security and data privacy challenges. To address these issues, Artificial Intelligence (AI) techniques such as Machine Learning (ML) and Deep Learning (DL) can be applied to build Intrusion Detection Systems (IDS) that help securing IoT networks. Federated Learning (FL) is a decentralized approach that can enhance performance and privacy of the data by training IDS on individual connected devices. This study proposes the use of unsupervised and supervised DL models trained via FL to develop IDS for IoT devices. The performance of FL-trained models is compared to models trained via non-FL using the N-BaIoT dataset of nine IoT devices. To improve the accuracy of DL models, a randomized search hyperparameter optimization is performed. Various performance metrics are used to evaluate the prediction results. The results indicate that the unsupervised AutoEncoder (AE) model trained via FL is the best overall in terms of all metrics, based on testing both FL and non-FL trained models on all nine IoT devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信