Carles Gomà , Katrin Henkner , Oliver Jäkel , Stefano Lorentini , Giuseppe Magro , Alfredo Mirandola , Lorenzo Placidi , Michele Togno , Marie Vidal , Gloria Vilches-Freixas , Jörg Wulff , Sairos Safai
{"title":"ESTRO-EPTN 质子铅笔束建模数据采集辐射剂量学指南","authors":"Carles Gomà , Katrin Henkner , Oliver Jäkel , Stefano Lorentini , Giuseppe Magro , Alfredo Mirandola , Lorenzo Placidi , Michele Togno , Marie Vidal , Gloria Vilches-Freixas , Jörg Wulff , Sairos Safai","doi":"10.1016/j.phro.2024.100621","DOIUrl":null,"url":null,"abstract":"<div><p>Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam—energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data—integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000915/pdfft?md5=0fa6cb1d2915fda28631a4c64d021428&pid=1-s2.0-S2405631624000915-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data\",\"authors\":\"Carles Gomà , Katrin Henkner , Oliver Jäkel , Stefano Lorentini , Giuseppe Magro , Alfredo Mirandola , Lorenzo Placidi , Michele Togno , Marie Vidal , Gloria Vilches-Freixas , Jörg Wulff , Sairos Safai\",\"doi\":\"10.1016/j.phro.2024.100621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam—energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data—integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000915/pdfft?md5=0fa6cb1d2915fda28631a4c64d021428&pid=1-s2.0-S2405631624000915-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
ESTRO-EPTN radiation dosimetry guidelines for the acquisition of proton pencil beam modelling data
Proton therapy (PT) is an advancing radiotherapy modality increasingly integrated into clinical settings, transitioning from research facilities to hospital environments. A critical aspect of the commissioning of a proton pencil beam scanning delivery system is the acquisition of experimental beam data for accurate beam modelling within the treatment planning system (TPS). These guidelines describe in detail the acquisition of proton pencil beam modelling data. First, it outlines the intrinsic characteristics of a proton pencil beam—energy distribution, angular-spatial distribution and particle number. Then, it lists the input data typically requested by TPSs. Finally, it describes in detail the set of experimental measurements recommended for the acquisition of proton pencil beam modelling data—integrated depth-dose curves, spot maps in air, and reference dosimetry. The rigorous characterization of these beam parameters is essential for ensuring the safe and precise delivery of proton therapy treatments.