Kim M. Hochreuter , Jintao Ren , Jasper Nijkamp , Stine S. Korreman , Slávka Lukacova , Jesper F. Kallehauge , Anouk K. Trip
{"title":"编辑临床轮廓对深度学习分割胶质母细胞瘤总肿瘤体积准确性的影响","authors":"Kim M. Hochreuter , Jintao Ren , Jasper Nijkamp , Stine S. Korreman , Slávka Lukacova , Jesper F. Kallehauge , Anouk K. Trip","doi":"10.1016/j.phro.2024.100620","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><p>Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs.</p></div><div><h3>Materials and methods</h3><p>The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing.</p><p>GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC<sub>1mm</sub>). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing.</p></div><div><h3>Results</h3><p>The median (range) sDSC<sub>1mm</sub> of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC<sub>1mm</sub> was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations.</p></div><div><h3>Conclusions</h3><p>High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.</p></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405631624000903/pdfft?md5=e88e04622fe9ccd80053c813dfb9b1cc&pid=1-s2.0-S2405631624000903-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma\",\"authors\":\"Kim M. Hochreuter , Jintao Ren , Jasper Nijkamp , Stine S. Korreman , Slávka Lukacova , Jesper F. Kallehauge , Anouk K. Trip\",\"doi\":\"10.1016/j.phro.2024.100620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><p>Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs.</p></div><div><h3>Materials and methods</h3><p>The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing.</p><p>GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC<sub>1mm</sub>). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing.</p></div><div><h3>Results</h3><p>The median (range) sDSC<sub>1mm</sub> of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC<sub>1mm</sub> was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations.</p></div><div><h3>Conclusions</h3><p>High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.</p></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000903/pdfft?md5=e88e04622fe9ccd80053c813dfb9b1cc&pid=1-s2.0-S2405631624000903-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624000903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624000903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
The effect of editing clinical contours on deep-learning segmentation accuracy of the gross tumor volume in glioblastoma
Background and purpose
Deep-learning (DL) models for segmentation of the gross tumor volume (GTV) in radiotherapy are generally based on clinical delineations which suffer from inter-observer variability. The aim of this study was to compare performance of a DL-model based on clinical glioblastoma GTVs to a model based on a single-observer edited version of the same GTVs.
Materials and methods
The dataset included imaging data (Computed Tomography (CT), T1, contrast-T1 (T1C), and fluid-attenuated-inversion-recovery (FLAIR)) of 259 glioblastoma patients treated with post-operative radiotherapy between 2012 and 2019 at a single institute. The clinical GTVs were edited using all imaging data. The dataset was split into 207 cases for training/validation and 52 for testing.
GTV segmentation models (nnUNet) were trained on clinical and edited GTVs separately and compared using Surface Dice with 1 mm tolerance (sDSC1mm). We also evaluated model performance with respect to extent of resection (EOR), and different imaging combinations (T1C/T1/FLAIR/CT, T1C/FLAIR/CT, T1C/FLAIR, T1C/CT, T1C/T1, T1C). A Wilcoxon test was used for significance testing.
Results
The median (range) sDSC1mm of the clinical-GTV-model and edited-GTV-model both evaluated with the edited contours, was 0.76 (0.43–0.94) vs. 0.92 (0.60–0.98) respectively (p < 0.001). sDSC1mm was not significantly different between patients with a biopsy, partial, and complete resection. T1C as single input performed as good as use of imaging combinations.
Conclusions
High segmentation accuracy was obtained by the DL-models. Editing of the clinical GTVs significantly increased DL performance with a relevant effect size. DL performance was robust for EOR and highly accurate using only T1C.