通过黑洞阴影和弱场极限粒子偏转的三阶曲率量子引力修正轨迹

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Gaetano Lambiase , Reggie C. Pantig , Ali Övgün
{"title":"通过黑洞阴影和弱场极限粒子偏转的三阶曲率量子引力修正轨迹","authors":"Gaetano Lambiase ,&nbsp;Reggie C. Pantig ,&nbsp;Ali Övgün","doi":"10.1016/j.dark.2024.101597","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of the quantum-gravity correction at the third-order curvature (<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>) on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> can easily be achieved by the standard Lagrangian for photons, the deflection angle <span><math><mi>α</mi></math></span> employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi></mrow></math></span> for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is <span><math><mrow><mi>M</mi><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>192</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>315</mn><mo>]</mo></mrow></mrow></math></span>. We also derived the analytic formula for the observer-dependent shadow, which confirms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of <span><math><mi>α</mi></math></span> is shown to be independent of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> if the finite distance <span><math><mrow><mi>u</mi><mo>→</mo><mn>0</mn></mrow></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is not coupled to any time-like geodesic. Finally, the effect of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> manifests in two ways: if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is large enough to offset the small value of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> (which is beyond the theoretical mass limit), or if <span><math><mi>b</mi></math></span> is comparable to <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> for a quantum black hole.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101597"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212686424001791/pdfft?md5=62799e0a0ddcebfa2090beaded4b51a8&pid=1-s2.0-S2212686424001791-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Traces of quantum gravitational correction at third-order curvature through the black hole shadow and particle deflection at the weak field limit\",\"authors\":\"Gaetano Lambiase ,&nbsp;Reggie C. Pantig ,&nbsp;Ali Övgün\",\"doi\":\"10.1016/j.dark.2024.101597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the impact of the quantum-gravity correction at the third-order curvature (<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>) on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> can easily be achieved by the standard Lagrangian for photons, the deflection angle <span><math><mi>α</mi></math></span> employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi></mrow></math></span> for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is <span><math><mrow><mi>M</mi><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>192</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>315</mn><mo>]</mo></mrow></mrow></math></span>. We also derived the analytic formula for the observer-dependent shadow, which confirms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of <span><math><mi>α</mi></math></span> is shown to be independent of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> if the finite distance <span><math><mrow><mi>u</mi><mo>→</mo><mn>0</mn></mrow></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is not coupled to any time-like geodesic. Finally, the effect of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> manifests in two ways: if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is large enough to offset the small value of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> (which is beyond the theoretical mass limit), or if <span><math><mi>b</mi></math></span> is comparable to <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> for a quantum black hole.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101597\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001791/pdfft?md5=62799e0a0ddcebfa2090beaded4b51a8&pid=1-s2.0-S2212686424001791-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001791\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001791","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了三阶曲率(c6)的量子引力修正对黑洞阴影和偏转角在弱场机制下的影响,两者都涉及观测者的有限距离。光子球和影子半径 Rsh 的计算可以通过光子的标准拉格朗日轻松实现,而偏转角 α 则采用了高斯-波内特定理(GBT)的有限距离版本。我们发现,光子球在普朗克质量和波黑理论质量极限下都简化为经典表达式 rph=3M,从而掩盖了该度量在量子和天体物理学基础上的适用性信息。然而,我们对阴影的计算显示,c6 是严格的负值,并限制了该度量对量子黑洞的适用性。例如,质量的边界是 M/lPl∈[0.192,4.315]。我们还推导出了观察者依赖阴影的解析公式,这证实了 c6 对量子黑洞的影响,即使观察者在渐近区也是如此。这一参数的影响在量子黑洞附近也会加强。我们对α的解析计算表明,如果有限距离u→0,且c6不与任何类时间大地线耦合,则α与c6无关。最后,c6 的影响表现在两个方面:如果 M2 大到足以抵消 lPl 的小值(超出理论质量极限),或者如果 b 与量子黑洞的 lPl 相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traces of quantum gravitational correction at third-order curvature through the black hole shadow and particle deflection at the weak field limit

This study investigates the impact of the quantum-gravity correction at the third-order curvature (c6) on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius Rsh can easily be achieved by the standard Lagrangian for photons, the deflection angle α employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression rph=3M for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that c6 is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is M/lPl[0.192,4.315]. We also derived the analytic formula for the observer-dependent shadow, which confirms c6’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of α is shown to be independent of c6 if the finite distance u0, and c6 is not coupled to any time-like geodesic. Finally, the effect of c6 manifests in two ways: if M2 is large enough to offset the small value of lPl (which is beyond the theoretical mass limit), or if b is comparable to lPl for a quantum black hole.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信