{"title":"通过黑洞阴影和弱场极限粒子偏转的三阶曲率量子引力修正轨迹","authors":"Gaetano Lambiase , Reggie C. Pantig , Ali Övgün","doi":"10.1016/j.dark.2024.101597","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the impact of the quantum-gravity correction at the third-order curvature (<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>) on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> can easily be achieved by the standard Lagrangian for photons, the deflection angle <span><math><mi>α</mi></math></span> employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi></mrow></math></span> for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is <span><math><mrow><mi>M</mi><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>192</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>315</mn><mo>]</mo></mrow></mrow></math></span>. We also derived the analytic formula for the observer-dependent shadow, which confirms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of <span><math><mi>α</mi></math></span> is shown to be independent of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> if the finite distance <span><math><mrow><mi>u</mi><mo>→</mo><mn>0</mn></mrow></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is not coupled to any time-like geodesic. Finally, the effect of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> manifests in two ways: if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is large enough to offset the small value of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> (which is beyond the theoretical mass limit), or if <span><math><mi>b</mi></math></span> is comparable to <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> for a quantum black hole.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101597"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2212686424001791/pdfft?md5=62799e0a0ddcebfa2090beaded4b51a8&pid=1-s2.0-S2212686424001791-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Traces of quantum gravitational correction at third-order curvature through the black hole shadow and particle deflection at the weak field limit\",\"authors\":\"Gaetano Lambiase , Reggie C. Pantig , Ali Övgün\",\"doi\":\"10.1016/j.dark.2024.101597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the impact of the quantum-gravity correction at the third-order curvature (<span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>) on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>sh</mi></mrow></msub></math></span> can easily be achieved by the standard Lagrangian for photons, the deflection angle <span><math><mi>α</mi></math></span> employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression <span><math><mrow><msub><mrow><mi>r</mi></mrow><mrow><mi>ph</mi></mrow></msub><mo>=</mo><mn>3</mn><mi>M</mi></mrow></math></span> for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is <span><math><mrow><mi>M</mi><mo>/</mo><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub><mo>∈</mo><mrow><mo>[</mo><mn>0</mn><mo>.</mo><mn>192</mn><mo>,</mo><mn>4</mn><mo>.</mo><mn>315</mn><mo>]</mo></mrow></mrow></math></span>. We also derived the analytic formula for the observer-dependent shadow, which confirms <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span>’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of <span><math><mi>α</mi></math></span> is shown to be independent of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> if the finite distance <span><math><mrow><mi>u</mi><mo>→</mo><mn>0</mn></mrow></math></span>, and <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> is not coupled to any time-like geodesic. Finally, the effect of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>6</mn></mrow></msub></math></span> manifests in two ways: if <span><math><msup><mrow><mi>M</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> is large enough to offset the small value of <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> (which is beyond the theoretical mass limit), or if <span><math><mi>b</mi></math></span> is comparable to <span><math><msub><mrow><mi>l</mi></mrow><mrow><mi>Pl</mi></mrow></msub></math></span> for a quantum black hole.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101597\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001791/pdfft?md5=62799e0a0ddcebfa2090beaded4b51a8&pid=1-s2.0-S2212686424001791-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424001791\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424001791","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Traces of quantum gravitational correction at third-order curvature through the black hole shadow and particle deflection at the weak field limit
This study investigates the impact of the quantum-gravity correction at the third-order curvature () on the black hole’s shadow and deflection angle on the weak field regime, both involving finite distances of observers. While the calculation of the photonsphere and shadow radius can easily be achieved by the standard Lagrangian for photons, the deflection angle employs the finite-distance version of the Gauss–Bonnet theorem (GBT). We find that the photonsphere reduces to the classical expression for both the Planck mass and the theoretical mass limit for BH, thus concealing the information about the applicability of the metric on the quantum and astrophysical grounds. Our calculation of the shadow, however, revealed that is strictly negative and constrains the applicability of the metric to quantum black holes. For instance, the bounds for the mass is . We also derived the analytic formula for the observer-dependent shadow, which confirms ’s influence on quantum black holes even for observers in the asymptotic regions. The influence of such a parameter also strengthens near the quantum black hole. Our analytic calculation of is shown to be independent of if the finite distance , and is not coupled to any time-like geodesic. Finally, the effect of manifests in two ways: if is large enough to offset the small value of (which is beyond the theoretical mass limit), or if is comparable to for a quantum black hole.
期刊介绍:
Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact.
The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.