排序集抽样下平均值估计值的再现性

Syed Abdul Rehman , Tahani Coolen-Maturi , Frank P.A. Coolen , Javid Shabbir
{"title":"排序集抽样下平均值估计值的再现性","authors":"Syed Abdul Rehman ,&nbsp;Tahani Coolen-Maturi ,&nbsp;Frank P.A. Coolen ,&nbsp;Javid Shabbir","doi":"10.1016/j.fraope.2024.100139","DOIUrl":null,"url":null,"abstract":"<div><p>In statistical inferences, the estimation of population parameters using information obtained from a sample is an important method. This involves choosing an appropriate sampling method to collect data. An efficient sampling method used for data collection is Ranked Set Sampling (RSS). In this study, we investigate the reproducibility of four well-known mean estimators under RSS using parametric predictive bootstrapping. These estimators are called conventional, ratio, exponential ratio, and regression estimators. Reproducibility is the ability of a statistical technique to obtain results similar to those based on the original experiment if the experiment is repeated under the same conditions. We conduct a simulation study to compare the reproducibility of mean estimators for varying sample sizes when sampling is based on perfect and imperfect rankings. We consider data on abalone in our simulations to demonstrate real-world applications. This study concludes that the regression estimator is the best reproducible estimator, while the conventional estimator is the worst in this regard.</p></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"8 ","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773186324000690/pdfft?md5=9c746730f607d3ced160c7d475d08ac8&pid=1-s2.0-S2773186324000690-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of mean estimators under ranked set sampling\",\"authors\":\"Syed Abdul Rehman ,&nbsp;Tahani Coolen-Maturi ,&nbsp;Frank P.A. Coolen ,&nbsp;Javid Shabbir\",\"doi\":\"10.1016/j.fraope.2024.100139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In statistical inferences, the estimation of population parameters using information obtained from a sample is an important method. This involves choosing an appropriate sampling method to collect data. An efficient sampling method used for data collection is Ranked Set Sampling (RSS). In this study, we investigate the reproducibility of four well-known mean estimators under RSS using parametric predictive bootstrapping. These estimators are called conventional, ratio, exponential ratio, and regression estimators. Reproducibility is the ability of a statistical technique to obtain results similar to those based on the original experiment if the experiment is repeated under the same conditions. We conduct a simulation study to compare the reproducibility of mean estimators for varying sample sizes when sampling is based on perfect and imperfect rankings. We consider data on abalone in our simulations to demonstrate real-world applications. This study concludes that the regression estimator is the best reproducible estimator, while the conventional estimator is the worst in this regard.</p></div>\",\"PeriodicalId\":100554,\"journal\":{\"name\":\"Franklin Open\",\"volume\":\"8 \",\"pages\":\"Article 100139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2773186324000690/pdfft?md5=9c746730f607d3ced160c7d475d08ac8&pid=1-s2.0-S2773186324000690-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Franklin Open\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773186324000690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186324000690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在统计推断中,利用从样本中获得的信息来估计总体参数是一种重要方法。这就需要选择适当的抽样方法来收集数据。用于数据收集的一种高效抽样方法是排序集抽样(RSS)。在本研究中,我们使用参数预测引导法研究了 RSS 下四个著名均值估计器的重现性。这些估计器被称为传统估计器、比率估计器、指数比率估计器和回归估计器。可重复性是指一种统计技术在相同条件下重复实验时,获得与原始实验结果相似结果的能力。我们进行了一项模拟研究,以比较在完全和不完全排名的基础上进行抽样时,不同样本量的平均估计值的再现性。我们在模拟中考虑了鲍鱼的数据,以演示实际应用。本研究得出结论,回归估计器是重现性最好的估计器,而传统估计器在这方面的重现性最差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproducibility of mean estimators under ranked set sampling

In statistical inferences, the estimation of population parameters using information obtained from a sample is an important method. This involves choosing an appropriate sampling method to collect data. An efficient sampling method used for data collection is Ranked Set Sampling (RSS). In this study, we investigate the reproducibility of four well-known mean estimators under RSS using parametric predictive bootstrapping. These estimators are called conventional, ratio, exponential ratio, and regression estimators. Reproducibility is the ability of a statistical technique to obtain results similar to those based on the original experiment if the experiment is repeated under the same conditions. We conduct a simulation study to compare the reproducibility of mean estimators for varying sample sizes when sampling is based on perfect and imperfect rankings. We consider data on abalone in our simulations to demonstrate real-world applications. This study concludes that the regression estimator is the best reproducible estimator, while the conventional estimator is the worst in this regard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信