Shuyu Huang , Yaqi Wang , Sen Li , Xin Huo , Fenggui Lu
{"title":"钢-镍异种合金激光偏置焊接中大偏析的形成控制和微结构演变","authors":"Shuyu Huang , Yaqi Wang , Sen Li , Xin Huo , Fenggui Lu","doi":"10.1016/j.jmatprotec.2024.118533","DOIUrl":null,"url":null,"abstract":"<div><p>To precisely control the melting of two base metals, laser offset welding is an effective method for managing the interfacial microstructure in dissimilar metal welds. Macrosegregation exhibits a markedly different morphology near the steel-nickel fusion line, which plays an important role in premature creep failure. In this study, it was found that an offset of the laser beam towards the nickel correlated with an increase in macrosegregation. When the laser beam was biased towards the steel, the partially mixed zone (PMZ) and transition zone (TZ) of 9Cr steel were identifiable within the macrosegregation, displaying a distinct solidification mode. Lath martensite and fine austenite formed in the PMZ, with alternating distributions of martensite and austenite observed in the TZ. Conversely, when the laser beam was biased towards the nickel, the unmixed zone (UMZ) of 9Cr steel was observed within the macrosegregation. Nanoindentation tests revealed that the maximum nanohardness in macrosegregation reached 5.90 GPa in the PMZ due to the formation of lath martensite, while the minimum nanohardness was 1.30 GPa in the TZ due to reduced martensite formation. Additionally, the TZ exhibited a significant reduction in resistance to plastic deformation. The various microstructures of macrosegregation were attributed to the solidification process and the dilution rate of 9Cr steel. When the liquidus temperature of WM exceeded 1455℃, a wide TZ formed in the macrosegregation due to adequate mixing. In contrast, when the WM had a significantly lower liquidus temperature than the 9Cr steel, only UMZ and PMZ formed in the macrosegregation due to preferential solidification and insufficient mixing. To minimize macrosegregation and eliminate the softening TZ, a laser beam offset towards the steel between 0.1 mm and 0.2 mm is recommended.</p></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"332 ","pages":"Article 118533"},"PeriodicalIF":6.7000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The formation control and microstructure evolution of macrosegregation in laser offset welding on steel-nickel dissimilar alloy\",\"authors\":\"Shuyu Huang , Yaqi Wang , Sen Li , Xin Huo , Fenggui Lu\",\"doi\":\"10.1016/j.jmatprotec.2024.118533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To precisely control the melting of two base metals, laser offset welding is an effective method for managing the interfacial microstructure in dissimilar metal welds. Macrosegregation exhibits a markedly different morphology near the steel-nickel fusion line, which plays an important role in premature creep failure. In this study, it was found that an offset of the laser beam towards the nickel correlated with an increase in macrosegregation. When the laser beam was biased towards the steel, the partially mixed zone (PMZ) and transition zone (TZ) of 9Cr steel were identifiable within the macrosegregation, displaying a distinct solidification mode. Lath martensite and fine austenite formed in the PMZ, with alternating distributions of martensite and austenite observed in the TZ. Conversely, when the laser beam was biased towards the nickel, the unmixed zone (UMZ) of 9Cr steel was observed within the macrosegregation. Nanoindentation tests revealed that the maximum nanohardness in macrosegregation reached 5.90 GPa in the PMZ due to the formation of lath martensite, while the minimum nanohardness was 1.30 GPa in the TZ due to reduced martensite formation. Additionally, the TZ exhibited a significant reduction in resistance to plastic deformation. The various microstructures of macrosegregation were attributed to the solidification process and the dilution rate of 9Cr steel. When the liquidus temperature of WM exceeded 1455℃, a wide TZ formed in the macrosegregation due to adequate mixing. In contrast, when the WM had a significantly lower liquidus temperature than the 9Cr steel, only UMZ and PMZ formed in the macrosegregation due to preferential solidification and insufficient mixing. To minimize macrosegregation and eliminate the softening TZ, a laser beam offset towards the steel between 0.1 mm and 0.2 mm is recommended.</p></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"332 \",\"pages\":\"Article 118533\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013624002516\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013624002516","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
The formation control and microstructure evolution of macrosegregation in laser offset welding on steel-nickel dissimilar alloy
To precisely control the melting of two base metals, laser offset welding is an effective method for managing the interfacial microstructure in dissimilar metal welds. Macrosegregation exhibits a markedly different morphology near the steel-nickel fusion line, which plays an important role in premature creep failure. In this study, it was found that an offset of the laser beam towards the nickel correlated with an increase in macrosegregation. When the laser beam was biased towards the steel, the partially mixed zone (PMZ) and transition zone (TZ) of 9Cr steel were identifiable within the macrosegregation, displaying a distinct solidification mode. Lath martensite and fine austenite formed in the PMZ, with alternating distributions of martensite and austenite observed in the TZ. Conversely, when the laser beam was biased towards the nickel, the unmixed zone (UMZ) of 9Cr steel was observed within the macrosegregation. Nanoindentation tests revealed that the maximum nanohardness in macrosegregation reached 5.90 GPa in the PMZ due to the formation of lath martensite, while the minimum nanohardness was 1.30 GPa in the TZ due to reduced martensite formation. Additionally, the TZ exhibited a significant reduction in resistance to plastic deformation. The various microstructures of macrosegregation were attributed to the solidification process and the dilution rate of 9Cr steel. When the liquidus temperature of WM exceeded 1455℃, a wide TZ formed in the macrosegregation due to adequate mixing. In contrast, when the WM had a significantly lower liquidus temperature than the 9Cr steel, only UMZ and PMZ formed in the macrosegregation due to preferential solidification and insufficient mixing. To minimize macrosegregation and eliminate the softening TZ, a laser beam offset towards the steel between 0.1 mm and 0.2 mm is recommended.
期刊介绍:
The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance.
Areas of interest to the journal include:
• Casting, forming and machining
• Additive processing and joining technologies
• The evolution of material properties under the specific conditions met in manufacturing processes
• Surface engineering when it relates specifically to a manufacturing process
• Design and behavior of equipment and tools.