{"title":"简单的行为改变如何影响人群疏散效率:第 1 部分.个人决策","authors":"Milad Haghani, Maziar Yazdani","doi":"10.1016/j.trc.2024.104763","DOIUrl":null,"url":null,"abstract":"<div><p>Crowded environments are inherently vulnerable to a range of risks, including earthquakes, fires, violent attacks, and terrorism. In such scenarios, every second counts in an evacuation, as it can significantly impact the number of lives saved. This paper introduces a novel approach to optimising crowd evacuation processes, focusing on behavioural modification rather than traditional methods such as mathematical optimisation models or architectural adjustments. We propose that by altering the behaviours of individuals within a crowd, overall system efficiency can be enhanced from within. We explore the effects of imparting simple, easily understandable strategies or instructions to individuals that can improve evacuation efficiency. The current work concentrates on how modifications in individual <em>decision-making—</em>namely, exit-choice and exit-choice-changing behaviour<em>—</em>can influence evacuation dynamics. We present the results of six major evacuation experiments, encompassing nearly 100 experimental scenarios and repetitions, which specifically investigate the effect of influencing exit choice and adaptation in exit-choice behaviour. The investigation revolves around three core questions: (a) the impact of effective strategies (b) the potential consequences of detrimental strategies, indicative of common misconceptions or poor advice, and (c) the influence of varying levels of strategy adoption, examining how system efficiency changes as more individuals embrace either beneficial or harmful strategies. The findings indicate that behavioural modification can substantially influence evacuation efficiency. Interestingly, the negative impact of poor strategies outweighs the benefits of effective ones. With respect to beneficial strategies, a significant increase in efficiency is observed at initial and intermediate levels of strategy adoption/uptake, suggesting that complete compliance is not necessary to enhance overall system performance. The benefit of influencing decision adaptation behaviour is considerably more tangible than influencing exit choice behaviour. These insights establish a novel perspective in evacuation safety. They lay a foundational framework for developing targeted public education and training programs based on empirical evidence. They highlight the importance of awareness and self-regulation among crowds, showcasing their potential to significantly increase both efficiency and safety in evacuation scenarios, potentially saving lives.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0968090X24002845/pdfft?md5=c4b9e6e8572e11758af16c72c7a664a1&pid=1-s2.0-S0968090X24002845-main.pdf","citationCount":"0","resultStr":"{\"title\":\"How simple behavioural modifications can influence evacuation efficiency of crowds: Part 1. Decision making of individuals\",\"authors\":\"Milad Haghani, Maziar Yazdani\",\"doi\":\"10.1016/j.trc.2024.104763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Crowded environments are inherently vulnerable to a range of risks, including earthquakes, fires, violent attacks, and terrorism. In such scenarios, every second counts in an evacuation, as it can significantly impact the number of lives saved. This paper introduces a novel approach to optimising crowd evacuation processes, focusing on behavioural modification rather than traditional methods such as mathematical optimisation models or architectural adjustments. We propose that by altering the behaviours of individuals within a crowd, overall system efficiency can be enhanced from within. We explore the effects of imparting simple, easily understandable strategies or instructions to individuals that can improve evacuation efficiency. The current work concentrates on how modifications in individual <em>decision-making—</em>namely, exit-choice and exit-choice-changing behaviour<em>—</em>can influence evacuation dynamics. We present the results of six major evacuation experiments, encompassing nearly 100 experimental scenarios and repetitions, which specifically investigate the effect of influencing exit choice and adaptation in exit-choice behaviour. The investigation revolves around three core questions: (a) the impact of effective strategies (b) the potential consequences of detrimental strategies, indicative of common misconceptions or poor advice, and (c) the influence of varying levels of strategy adoption, examining how system efficiency changes as more individuals embrace either beneficial or harmful strategies. The findings indicate that behavioural modification can substantially influence evacuation efficiency. Interestingly, the negative impact of poor strategies outweighs the benefits of effective ones. With respect to beneficial strategies, a significant increase in efficiency is observed at initial and intermediate levels of strategy adoption/uptake, suggesting that complete compliance is not necessary to enhance overall system performance. The benefit of influencing decision adaptation behaviour is considerably more tangible than influencing exit choice behaviour. These insights establish a novel perspective in evacuation safety. They lay a foundational framework for developing targeted public education and training programs based on empirical evidence. They highlight the importance of awareness and self-regulation among crowds, showcasing their potential to significantly increase both efficiency and safety in evacuation scenarios, potentially saving lives.</p></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24002845/pdfft?md5=c4b9e6e8572e11758af16c72c7a664a1&pid=1-s2.0-S0968090X24002845-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24002845\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24002845","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
How simple behavioural modifications can influence evacuation efficiency of crowds: Part 1. Decision making of individuals
Crowded environments are inherently vulnerable to a range of risks, including earthquakes, fires, violent attacks, and terrorism. In such scenarios, every second counts in an evacuation, as it can significantly impact the number of lives saved. This paper introduces a novel approach to optimising crowd evacuation processes, focusing on behavioural modification rather than traditional methods such as mathematical optimisation models or architectural adjustments. We propose that by altering the behaviours of individuals within a crowd, overall system efficiency can be enhanced from within. We explore the effects of imparting simple, easily understandable strategies or instructions to individuals that can improve evacuation efficiency. The current work concentrates on how modifications in individual decision-making—namely, exit-choice and exit-choice-changing behaviour—can influence evacuation dynamics. We present the results of six major evacuation experiments, encompassing nearly 100 experimental scenarios and repetitions, which specifically investigate the effect of influencing exit choice and adaptation in exit-choice behaviour. The investigation revolves around three core questions: (a) the impact of effective strategies (b) the potential consequences of detrimental strategies, indicative of common misconceptions or poor advice, and (c) the influence of varying levels of strategy adoption, examining how system efficiency changes as more individuals embrace either beneficial or harmful strategies. The findings indicate that behavioural modification can substantially influence evacuation efficiency. Interestingly, the negative impact of poor strategies outweighs the benefits of effective ones. With respect to beneficial strategies, a significant increase in efficiency is observed at initial and intermediate levels of strategy adoption/uptake, suggesting that complete compliance is not necessary to enhance overall system performance. The benefit of influencing decision adaptation behaviour is considerably more tangible than influencing exit choice behaviour. These insights establish a novel perspective in evacuation safety. They lay a foundational framework for developing targeted public education and training programs based on empirical evidence. They highlight the importance of awareness and self-regulation among crowds, showcasing their potential to significantly increase both efficiency and safety in evacuation scenarios, potentially saving lives.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.