{"title":"低热导率半 Heuslers TiXPb(X = Ni、Pd、Pt)的热电特性:第一原理研究","authors":"","doi":"10.1016/j.commatsci.2024.113250","DOIUrl":null,"url":null,"abstract":"<div><p>Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (X<span><math><mo>=</mo></math></span>Ni, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32−0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in <span><math><mrow><mi>z</mi><mi>T</mi><mo>></mo><mn>1</mn></mrow></math></span> in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> for both electrons and holes. In this material our calculation yields a maximum <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermoelectric properties of low thermal conductivity half Heuslers TiXPb (X = Ni, Pd, Pt): A first principles investigation\",\"authors\":\"\",\"doi\":\"10.1016/j.commatsci.2024.113250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (X<span><math><mo>=</mo></math></span>Ni, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32−0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in <span><math><mrow><mi>z</mi><mi>T</mi><mo>></mo><mn>1</mn></mrow></math></span> in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> for both electrons and holes. In this material our calculation yields a maximum <span><math><mrow><mi>z</mi><mi>T</mi></mrow></math></span> of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span> and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 × <span><math><mrow><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>20</mn></mrow></msup></mrow></math></span> <span><math><msup><mrow><mi>cm</mi></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624004713\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624004713","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
半导体半豪斯勒合金是在高温下运行的热电发电机的潜在候选材料。在这项研究中,利用密度泛函理论和半经典玻尔兹曼输运理论研究了 18 价电子 TiXPb(X=Ni、Pd、Pt)化合物的稳定性、电子和热电特性。这些化合物在热力学和动力学上都很稳定。我们发现它们是间接带隙介于 0.32-0.64 eV 之间的半导体。我们的计算表明,从热电性能的角度来看,电子比空穴具有更好的传输特性。大功率因数和低晶格热导率的结合使所有材料的 zT>1 值都达到了 1。我们的计算结果预测,在这三种化合物中,TiPtPb 的电子和空穴的 zT 值最大。在这种材料中,当 n 型掺杂浓度为 9.46 × 1020 cm-3 时,我们的计算得出 900 K 时的最大 zT 值为 2.22;当 p 型掺杂浓度为 4.51 × 1020 cm-3 时,我们的计算得出 900 K 时的最大 zT 值为 1.80。
Thermoelectric properties of low thermal conductivity half Heuslers TiXPb (X = Ni, Pd, Pt): A first principles investigation
Semiconducting half-Heusler alloys are potential candidates for thermoelectric generators operational at high temperatures. In this work, the stability, electronic, and thermoelectric properties of 18 valence electron TiXPb (XNi, Pd, Pt) compounds are investigated using density functional theory and semi-classical Boltzmann transport theory. The compounds are both thermodynamically and dynamically stable. We find them to be semiconductors with indirect band gaps lying between 0.32−0.64 eV. Our calculations show that from thermoelectric performance perspective electrons exhibit better transport properties than holes. A combination of large power factor and low lattice thermal conductivity results in in all the materials. Our calculations predict that amongst the three compounds, TiPtPb have a maximum value of for both electrons and holes. In this material our calculation yields a maximum of 2.22 at 900 K for n-type doping at a doping concentration of 9.46 × and 1.80 at 900 K for p-type doping at a doping concentration of 4.51 × .
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.