{"title":"扩展 Hough 变换,识别并近似三维模型中的空间曲线","authors":"Chiara Romanengo, Bianca Falcidieno, Silvia Biasotti","doi":"10.1016/j.cagd.2024.102377","DOIUrl":null,"url":null,"abstract":"<div><p>Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (<span><span>Biederman, 1995</span></span>). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features</p><p>This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.</p><p>To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.</p><p>In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.</p></div>","PeriodicalId":55226,"journal":{"name":"Computer Aided Geometric Design","volume":"113 ","pages":"Article 102377"},"PeriodicalIF":1.3000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167839624001110/pdfft?md5=6bb00fd796f369e5995f8832f3474cc5&pid=1-s2.0-S0167839624001110-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Extending the Hough transform to recognize and approximate space curves in 3D models\",\"authors\":\"Chiara Romanengo, Bianca Falcidieno, Silvia Biasotti\",\"doi\":\"10.1016/j.cagd.2024.102377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (<span><span>Biederman, 1995</span></span>). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features</p><p>This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.</p><p>To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.</p><p>In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.</p></div>\",\"PeriodicalId\":55226,\"journal\":{\"name\":\"Computer Aided Geometric Design\",\"volume\":\"113 \",\"pages\":\"Article 102377\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001110/pdfft?md5=6bb00fd796f369e5995f8832f3474cc5&pid=1-s2.0-S0167839624001110-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Aided Geometric Design\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167839624001110\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Geometric Design","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167839624001110","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Extending the Hough transform to recognize and approximate space curves in 3D models
Feature curves are space curves identified by color or curvature variations in a shape, which are crucial for human perception (Biederman, 1995). Detecting these characteristic lines in 3D digital models becomes important for recognition and representation processes. For recognizing plane curves in images, the Hough transform (HT) provided a very good solution to the problem. It selects the best-fitting curve in a dictionary of families of curves through a voting procedure that makes it robust to noise and missing parts. Since 3D digital models are often obtained by scanning real objects and may have many defects, the HT has been extended to recognize and approximate space curves in 3D models that correspond to relevant features
This work overviews three HT-based different approaches for identifying and approximating spatial profiles of points extracted from point clouds or meshes. A first attempt at this extension involved projecting the spatial points onto the regression plane, thus reducing the problem to planar recognition and using families of plane curves. A second approach has been proposed to recognize spatial profiles that cannot be projected onto the regression plane, using two types of space curve families. Unfortunately, the main drawback of methods based on traditional HT is that it requires prior knowledge of which family of curves to look for.
To overcome this limitation, a third method has been developed that provides a piecewise space curve approximation using specific parametric polynomial curves. Additionally, free-form curves that a parametric or implicit form cannot express can be represented using this technique.
In the paper, we also analyze the pros and cons of the various approaches and how they managed and reduced the HT's computational cost, given the large number of parameters introduced when families of space curves are considered.
期刊介绍:
The journal Computer Aided Geometric Design is for researchers, scholars, and software developers dealing with mathematical and computational methods for the description of geometric objects as they arise in areas ranging from CAD/CAM to robotics and scientific visualization. The journal publishes original research papers, survey papers and with quick editorial decisions short communications of at most 3 pages. The primary objects of interest are curves, surfaces, and volumes such as splines (NURBS), meshes, subdivision surfaces as well as algorithms to generate, analyze, and manipulate them. This journal will report on new developments in CAGD and its applications, including but not restricted to the following:
-Mathematical and Geometric Foundations-
Curve, Surface, and Volume generation-
CAGD applications in Numerical Analysis, Computational Geometry, Computer Graphics, or Computer Vision-
Industrial, medical, and scientific applications.
The aim is to collect and disseminate information on computer aided design in one journal. To provide the user community with methods and algorithms for representing curves and surfaces. To illustrate computer aided geometric design by means of interesting applications. To combine curve and surface methods with computer graphics. To explain scientific phenomena by means of computer graphics. To concentrate on the interaction between theory and application. To expose unsolved problems of the practice. To develop new methods in computer aided geometry.