皮亚杰逻辑比例中的弗兰克三角准则

Henri Prade, Gilles Richard
{"title":"皮亚杰逻辑比例中的弗兰克三角准则","authors":"Henri Prade, Gilles Richard","doi":"arxiv-2408.03795","DOIUrl":null,"url":null,"abstract":"Starting from the Boolean notion of logical proportion in Piaget's sense,\nwhich turns out to be equivalent to analogical proportion, this note proposes a\ndefinition of analogical proportion between numerical values based on\ntriangular norms (and dual co-norms). Frank's family of triangular norms is\nparticularly interesting from this perspective. The article concludes with a\ncomparative discussion with another very recent proposal for defining\nanalogical proportions between numerical values based on the family of\ngeneralized means.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frank's triangular norms in Piaget's logical proportions\",\"authors\":\"Henri Prade, Gilles Richard\",\"doi\":\"arxiv-2408.03795\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from the Boolean notion of logical proportion in Piaget's sense,\\nwhich turns out to be equivalent to analogical proportion, this note proposes a\\ndefinition of analogical proportion between numerical values based on\\ntriangular norms (and dual co-norms). Frank's family of triangular norms is\\nparticularly interesting from this perspective. The article concludes with a\\ncomparative discussion with another very recent proposal for defining\\nanalogical proportions between numerical values based on the family of\\ngeneralized means.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03795\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从皮亚杰意义上的逻辑比例的布尔概念出发(事实证明它等同于类比比例),本说明提出了基于三角准则(和对偶共准则)的数值间类比比例的定义。从这个角度看,弗兰克的三角准则族尤其有趣。文章最后还比较讨论了最近提出的另一个基于广义均值族定义数值间类比比例的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frank's triangular norms in Piaget's logical proportions
Starting from the Boolean notion of logical proportion in Piaget's sense, which turns out to be equivalent to analogical proportion, this note proposes a definition of analogical proportion between numerical values based on triangular norms (and dual co-norms). Frank's family of triangular norms is particularly interesting from this perspective. The article concludes with a comparative discussion with another very recent proposal for defining analogical proportions between numerical values based on the family of generalized means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信