同质类型空间上分数最大算子的新变量加权条件

Xi Cen
{"title":"同质类型空间上分数最大算子的新变量加权条件","authors":"Xi Cen","doi":"arxiv-2408.04544","DOIUrl":null,"url":null,"abstract":"Based on the rapid development of dyadic analysis and the theory of variable\nweighted function spaces over the spaces of homogeneous type $(X,d,\\mu)$ in\nrecent years, we systematically consider the quantitative variable weighted\ncharacterizations for fractional maximal operators. On the one hand, a new\nclass of variable multiple weight $A_{\\vec{p}(\\cdot),q(\\cdot)}(X)$ is\nestablished, which enables us to prove the strong and weak type variable\nmultiple weighted estimates for multilinear fractional maximal operators\n${{{\\mathscr M}_{\\eta }}}$. More precisely, \\[ {\\left[ {\\vec \\omega }\n\\right]_{{A_{\\vec p( \\cdot ),q( \\cdot )}}(X)}} \\lesssim {\\left\\|\n\\mathscr{M}_\\eta \\right\\|_{\\prod\\limits_{i = 1}^m {{L^{p_i( \\cdot )}}({X,\\omega\n_i})} \\to {L^{q( \\cdot )}}(X,\\omega )({WL^{q( \\cdot )}}(X,\\omega ))}} \\le\n{C_{\\vec \\omega ,\\eta ,m,\\mu ,X,\\vec p( \\cdot )}}. \\] On the other hand, on account of the classical Sawyer's condition\n$S_{p,q}(\\mathbb{R}^n)$, a new variable testing condition\n$C_{{p}(\\cdot),q(\\cdot)}(X)$ also appears in here, which allows us to obtain\nquantitative two-weighted estimates for fractional maximal operators\n${{{M}_{\\eta }}}$. To be exact, \\begin{align*} \\|M_{\\eta}\\|_{L^{p(\\cdot)}(X,\\omega)\\rightarrow L^{q(\\cdot)}(X,v)} \\lesssim\n\\sum_{\\theta=\\frac{1}{{{p_{\\rm{ - }}}}},\\frac{1}{{{p_{\\rm{ + }}}}}}\n\\left([\\omega ]_{C_{p( \\cdot ),q( \\cdot )}^1(X)} [\\omega, v]_{C_{p(\\cdot),\nq(\\cdot)}^2(X)}\\right)^{\\theta}, \\end{align*} The implicit constants mentioned\nabove are independent on the weights.","PeriodicalId":501036,"journal":{"name":"arXiv - MATH - Functional Analysis","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New variable weighted conditions for fractional maximal operators over spaces of homogeneous type\",\"authors\":\"Xi Cen\",\"doi\":\"arxiv-2408.04544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the rapid development of dyadic analysis and the theory of variable\\nweighted function spaces over the spaces of homogeneous type $(X,d,\\\\mu)$ in\\nrecent years, we systematically consider the quantitative variable weighted\\ncharacterizations for fractional maximal operators. On the one hand, a new\\nclass of variable multiple weight $A_{\\\\vec{p}(\\\\cdot),q(\\\\cdot)}(X)$ is\\nestablished, which enables us to prove the strong and weak type variable\\nmultiple weighted estimates for multilinear fractional maximal operators\\n${{{\\\\mathscr M}_{\\\\eta }}}$. More precisely, \\\\[ {\\\\left[ {\\\\vec \\\\omega }\\n\\\\right]_{{A_{\\\\vec p( \\\\cdot ),q( \\\\cdot )}}(X)}} \\\\lesssim {\\\\left\\\\|\\n\\\\mathscr{M}_\\\\eta \\\\right\\\\|_{\\\\prod\\\\limits_{i = 1}^m {{L^{p_i( \\\\cdot )}}({X,\\\\omega\\n_i})} \\\\to {L^{q( \\\\cdot )}}(X,\\\\omega )({WL^{q( \\\\cdot )}}(X,\\\\omega ))}} \\\\le\\n{C_{\\\\vec \\\\omega ,\\\\eta ,m,\\\\mu ,X,\\\\vec p( \\\\cdot )}}. \\\\] On the other hand, on account of the classical Sawyer's condition\\n$S_{p,q}(\\\\mathbb{R}^n)$, a new variable testing condition\\n$C_{{p}(\\\\cdot),q(\\\\cdot)}(X)$ also appears in here, which allows us to obtain\\nquantitative two-weighted estimates for fractional maximal operators\\n${{{M}_{\\\\eta }}}$. To be exact, \\\\begin{align*} \\\\|M_{\\\\eta}\\\\|_{L^{p(\\\\cdot)}(X,\\\\omega)\\\\rightarrow L^{q(\\\\cdot)}(X,v)} \\\\lesssim\\n\\\\sum_{\\\\theta=\\\\frac{1}{{{p_{\\\\rm{ - }}}}},\\\\frac{1}{{{p_{\\\\rm{ + }}}}}}\\n\\\\left([\\\\omega ]_{C_{p( \\\\cdot ),q( \\\\cdot )}^1(X)} [\\\\omega, v]_{C_{p(\\\\cdot),\\nq(\\\\cdot)}^2(X)}\\\\right)^{\\\\theta}, \\\\end{align*} The implicit constants mentioned\\nabove are independent on the weights.\",\"PeriodicalId\":501036,\"journal\":{\"name\":\"arXiv - MATH - Functional Analysis\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Functional Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Functional Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于近年来二元分析和均质型$(X,d,\mu)$空间上的变重函数空间理论的飞速发展,我们系统地考虑了分数最大算子的定量变重特征。一方面,我们建立了一类新的变量多重权$A_{\vec{p}(\cdot),q(\cdot)}(X)$,这使我们能够证明多线性分数最大算子${{\mathscr M}_{\eta }}$ 的强型和弱型变量多重权估计。更精确地说,\[ {left[ {\vec \omega }\right]_{{A_{\vec p( \cdot ),q( \cdot )}}(X)}}$\lesssim {\left|\mathscr{M}_\eta \right|_{\prod\limits_{i = 1}^m {{L^{p_i( \cdot )}}({X,\omega_i})} }\to {L^{q( \cdot )}}(X,\omega )({WL^{q( \cdot )}}(X,\omega ))}}}\le{C_{vec \omega ,\eta ,m,\mu ,X,\vec p( \cdot )}}.\]另一方面,基于经典的索耶条件$S_{p,q}(\mathbb{R}^n)$,这里还出现了一个新的变量检验条件$C_{p}(\cdot),q(\cdot)}(X)$,它允许我们得到分数最大算子的定量两重估计${{M}_{\eta }}$。确切地说,\begin{align*}|M_{\eta}\|{L^{p(\cdot)}(X,\omega)\rightarrow L^{q(\cdot)}(X,v)} \lesssim\sum_{\theta=\frac{1}{{p_{\rm{ - }}}}}、\frac{1}{{p_{\rm{ + }}}}}}\left([\omega ]_{C_{p( \cdot ),q( \cdot )}^1(X)} [\omega, v]_{C_{p(\cdot),q(\cdot)}^2(X)}\right)^{\theta}, \end{align*}上述隐含常数与权重无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New variable weighted conditions for fractional maximal operators over spaces of homogeneous type
Based on the rapid development of dyadic analysis and the theory of variable weighted function spaces over the spaces of homogeneous type $(X,d,\mu)$ in recent years, we systematically consider the quantitative variable weighted characterizations for fractional maximal operators. On the one hand, a new class of variable multiple weight $A_{\vec{p}(\cdot),q(\cdot)}(X)$ is established, which enables us to prove the strong and weak type variable multiple weighted estimates for multilinear fractional maximal operators ${{{\mathscr M}_{\eta }}}$. More precisely, \[ {\left[ {\vec \omega } \right]_{{A_{\vec p( \cdot ),q( \cdot )}}(X)}} \lesssim {\left\| \mathscr{M}_\eta \right\|_{\prod\limits_{i = 1}^m {{L^{p_i( \cdot )}}({X,\omega _i})} \to {L^{q( \cdot )}}(X,\omega )({WL^{q( \cdot )}}(X,\omega ))}} \le {C_{\vec \omega ,\eta ,m,\mu ,X,\vec p( \cdot )}}. \] On the other hand, on account of the classical Sawyer's condition $S_{p,q}(\mathbb{R}^n)$, a new variable testing condition $C_{{p}(\cdot),q(\cdot)}(X)$ also appears in here, which allows us to obtain quantitative two-weighted estimates for fractional maximal operators ${{{M}_{\eta }}}$. To be exact, \begin{align*} \|M_{\eta}\|_{L^{p(\cdot)}(X,\omega)\rightarrow L^{q(\cdot)}(X,v)} \lesssim \sum_{\theta=\frac{1}{{{p_{\rm{ - }}}}},\frac{1}{{{p_{\rm{ + }}}}}} \left([\omega ]_{C_{p( \cdot ),q( \cdot )}^1(X)} [\omega, v]_{C_{p(\cdot), q(\cdot)}^2(X)}\right)^{\theta}, \end{align*} The implicit constants mentioned above are independent on the weights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信