关于线分单元盘覆盖率及相关问题

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Gang Liu, Haitao Wang
{"title":"关于线分单元盘覆盖率及相关问题","authors":"Gang Liu,&nbsp;Haitao Wang","doi":"10.1016/j.comgeo.2024.102122","DOIUrl":null,"url":null,"abstract":"<div><p>Given a set <em>P</em> of <em>n</em> points and a set <em>S</em> of <em>m</em> disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of <em>P</em>. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of <em>P</em> by a line <em>ℓ</em>. We present an <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> time algorithm for the problem. This improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mo>+</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of <em>S</em> are located on a line <em>ℓ</em> while points of <em>P</em> can be anywhere in the plane. Our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>m</mi><mi>log</mi><mo>⁡</mo><mi>m</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, which improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time. In addition, our results lead to an algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time for a half-plane coverage problem (given <em>n</em> half-planes and <em>n</em> points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time. Further, if all half-planes are lower ones, our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time while the previously best algorithm takes <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the line-separable unit-disk coverage and related problems\",\"authors\":\"Gang Liu,&nbsp;Haitao Wang\",\"doi\":\"10.1016/j.comgeo.2024.102122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a set <em>P</em> of <em>n</em> points and a set <em>S</em> of <em>m</em> disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of <em>P</em>. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of <em>P</em> by a line <em>ℓ</em>. We present an <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> time algorithm for the problem. This improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mo>+</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of <em>S</em> are located on a line <em>ℓ</em> while points of <em>P</em> can be anywhere in the plane. Our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>m</mi><mi>log</mi><mo>⁡</mo><mi>m</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time, which improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mi>log</mi><mo>⁡</mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time. In addition, our results lead to an algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time for a half-plane coverage problem (given <em>n</em> half-planes and <em>n</em> points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time. Further, if all half-planes are lower ones, our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time while the previously best algorithm takes <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> time.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000440\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定平面上的一组点和一组磁盘,磁盘覆盖问题要求找到一个最小的磁盘子集,这些磁盘子集能够共同覆盖平面上的所有点。 这个问题是 NP 难题。在本文中,我们考虑的是该问题的线分割单位盘版本,即所有盘的半径相同,且它们的中心与点之间有一条线段 。我们提出了该问题的时间算法。这改进了之前的最佳时间结果。我们的技术还能解决线约束版本的问题,即所有圆盘的中心都位于一条线上,而圆盘的点可以在平面内的任何地方。我们的算法可在时间内运行,从而改进了之前的最佳时间结果。此外,我们的结果还为半平面覆盖问题(给定半平面和点,找出覆盖所有点的最小半平面子集)带来了一种计时算法;这改进了之前的最佳计时算法。此外,如果所有半平面都是较低的半平面,我们的算法会在时间内运行,而之前的最佳算法则需要时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the line-separable unit-disk coverage and related problems

Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line . We present an O((n+m)log(n+m)) time algorithm for the problem. This improves the previously best result of O(nm+nlogn) time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of S are located on a line while points of P can be anywhere in the plane. Our algorithm runs in O((n+m)log(m+n)+mlogmlogn) time, which improves the previously best result of O(nmlog(m+n)) time. In addition, our results lead to an algorithm of O(n3logn) time for a half-plane coverage problem (given n half-planes and n points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of O(n4logn) time. Further, if all half-planes are lower ones, our algorithm runs in O(nlogn) time while the previously best algorithm takes O(n2logn) time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信