{"title":"关于线分单元盘覆盖率及相关问题","authors":"Gang Liu, Haitao Wang","doi":"10.1016/j.comgeo.2024.102122","DOIUrl":null,"url":null,"abstract":"<div><p>Given a set <em>P</em> of <em>n</em> points and a set <em>S</em> of <em>m</em> disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of <em>P</em>. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of <em>P</em> by a line <em>ℓ</em>. We present an <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo></mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> time algorithm for the problem. This improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mo>+</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of <em>S</em> are located on a line <em>ℓ</em> while points of <em>P</em> can be anywhere in the plane. Our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>m</mi><mi>log</mi><mo></mo><mi>m</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, which improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time. In addition, our results lead to an algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time for a half-plane coverage problem (given <em>n</em> half-planes and <em>n</em> points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time. Further, if all half-planes are lower ones, our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time while the previously best algorithm takes <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the line-separable unit-disk coverage and related problems\",\"authors\":\"Gang Liu, Haitao Wang\",\"doi\":\"10.1016/j.comgeo.2024.102122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given a set <em>P</em> of <em>n</em> points and a set <em>S</em> of <em>m</em> disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of <em>P</em>. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of <em>P</em> by a line <em>ℓ</em>. We present an <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo></mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mo>)</mo></math></span> time algorithm for the problem. This improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mo>+</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of <em>S</em> are located on a line <em>ℓ</em> while points of <em>P</em> can be anywhere in the plane. Our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mo>(</mo><mi>n</mi><mo>+</mo><mi>m</mi><mo>)</mo><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>+</mo><mi>m</mi><mi>log</mi><mo></mo><mi>m</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time, which improves the previously best result of <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>m</mi><mi>log</mi><mo></mo><mo>(</mo><mi>m</mi><mo>+</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span> time. In addition, our results lead to an algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time for a half-plane coverage problem (given <em>n</em> half-planes and <em>n</em> points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time. Further, if all half-planes are lower ones, our algorithm runs in <span><math><mi>O</mi><mo>(</mo><mi>n</mi><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time while the previously best algorithm takes <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> time.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000440\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000440","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
On the line-separable unit-disk coverage and related problems
Given a set P of n points and a set S of m disks in the plane, the disk coverage problem asks for a smallest subset of disks that together cover all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line ℓ. We present an time algorithm for the problem. This improves the previously best result of time. Our techniques also solve the line-constrained version of the problem, where centers of all disks of S are located on a line ℓ while points of P can be anywhere in the plane. Our algorithm runs in time, which improves the previously best result of time. In addition, our results lead to an algorithm of time for a half-plane coverage problem (given n half-planes and n points, find a smallest subset of half-planes covering all points); this improves the previously best algorithm of time. Further, if all half-planes are lower ones, our algorithm runs in time while the previously best algorithm takes time.
期刊介绍:
Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems.
Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.