关于密集几何图的 k 色交叉比的说明

IF 0.4 4区 计算机科学 Q4 MATHEMATICS
Ruy Fabila-Monroy
{"title":"关于密集几何图的 k 色交叉比的说明","authors":"Ruy Fabila-Monroy","doi":"10.1016/j.comgeo.2024.102123","DOIUrl":null,"url":null,"abstract":"<div><p>A <em>geometric graph</em> is a graph whose vertex set is a set of points in general position in the plane, and its edges are straight line segments joining these points. We show that for every integer <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that the following holds. The edges of every dense geometric graph, with sufficiently many vertices, can be colored with <em>k</em> colors, such that the number of pairs of edges of the same color that cross is at most <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>−</mo><mi>c</mi><mo>)</mo></math></span> times the total number of pairs of edges that cross. The case when <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is a complete geometric graph, was proved by Aichholzer et al. (2019) <span><span>[2]</span></span>.</p></div>","PeriodicalId":51001,"journal":{"name":"Computational Geometry-Theory and Applications","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925772124000452/pdfft?md5=232d9c5eb8dccf79fd64157d664cfa52&pid=1-s2.0-S0925772124000452-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A note on the k-colored crossing ratio of dense geometric graphs\",\"authors\":\"Ruy Fabila-Monroy\",\"doi\":\"10.1016/j.comgeo.2024.102123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A <em>geometric graph</em> is a graph whose vertex set is a set of points in general position in the plane, and its edges are straight line segments joining these points. We show that for every integer <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span>, there exists a constant <span><math><mi>c</mi><mo>&gt;</mo><mn>0</mn></math></span> such that the following holds. The edges of every dense geometric graph, with sufficiently many vertices, can be colored with <em>k</em> colors, such that the number of pairs of edges of the same color that cross is at most <span><math><mo>(</mo><mn>1</mn><mo>/</mo><mi>k</mi><mo>−</mo><mi>c</mi><mo>)</mo></math></span> times the total number of pairs of edges that cross. The case when <span><math><mi>k</mi><mo>=</mo><mn>2</mn></math></span> and <em>G</em> is a complete geometric graph, was proved by Aichholzer et al. (2019) <span><span>[2]</span></span>.</p></div>\",\"PeriodicalId\":51001,\"journal\":{\"name\":\"Computational Geometry-Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000452/pdfft?md5=232d9c5eb8dccf79fd64157d664cfa52&pid=1-s2.0-S0925772124000452-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Geometry-Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925772124000452\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Geometry-Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925772124000452","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

几何图形是一种顶点集是平面上一般位置点的集合,边是连接这些点的直线段的图形。我们证明,对于每一个整数 k≥2,都存在一个常数 c>0,使得以下条件成立。每个具有足够多顶点的密集几何图形的边都可以用 k 种颜色着色,这样,交叉的同色边对数最多是交叉边对总数的(1/k-c)倍。Aichholzer 等人(2019)[2] 证明了 k=2 且 G 是完整几何图形时的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on the k-colored crossing ratio of dense geometric graphs

A geometric graph is a graph whose vertex set is a set of points in general position in the plane, and its edges are straight line segments joining these points. We show that for every integer k2, there exists a constant c>0 such that the following holds. The edges of every dense geometric graph, with sufficiently many vertices, can be colored with k colors, such that the number of pairs of edges of the same color that cross is at most (1/kc) times the total number of pairs of edges that cross. The case when k=2 and G is a complete geometric graph, was proved by Aichholzer et al. (2019) [2].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
16.70%
发文量
43
审稿时长
>12 weeks
期刊介绍: Computational Geometry is a forum for research in theoretical and applied aspects of computational geometry. The journal publishes fundamental research in all areas of the subject, as well as disseminating information on the applications, techniques, and use of computational geometry. Computational Geometry publishes articles on the design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects. Also welcomed are computational geometry solutions to fundamental problems arising in computer graphics, pattern recognition, robotics, image processing, CAD-CAM, VLSI design and geographical information systems. Computational Geometry features a special section containing open problems and concise reports on implementations of computational geometry tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信