利用多目标灰狼优化法联合反演直流电阻率和 MT 数据

Rohan Sharma, Divakar Vashisth, Kuldeep Sarkar, Upendra Kumar Singh
{"title":"利用多目标灰狼优化法联合反演直流电阻率和 MT 数据","authors":"Rohan Sharma, Divakar Vashisth, Kuldeep Sarkar, Upendra Kumar Singh","doi":"arxiv-2408.02414","DOIUrl":null,"url":null,"abstract":"Joint inversion of geophysical datasets is instrumental in subsurface\ncharacterization and has garnered significant popularity, leveraging\ninformation from multiple geophysical methods. In this study, we implemented\nthe joint inversion of DC resistivity with MT data using the Multi-Objective\nGrey Wolf Optimization (MOGWO) algorithm. As an extension of the widely-used\nGrey Wolf Optimization algorithm, MOGWO offers a suite of pareto optimal\nnon-dominated solutions, eliminating the need for weighting parameters in the\nobjective functions. This set of non-dominated predictions also facilitates the\nunderstanding of uncertainty in the predicted model parameters. Through a field\ncase study in the region around Broken Hill in South Central Australia, the\npaper showcases MOGWO's capabilities in joint inversion, providing confident\nestimates of the model parameters (resistivity profiles), as indicated by a\nnarrow spread in the suite of solutions. The obtained results are comparable to\nwell established methodologies and highlight the efficacy of MOGWO as a\nreliable tool in geophysical exploration.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Inversion of DC Resistivity and MT Data using Multi-Objective Grey Wolf Optimization\",\"authors\":\"Rohan Sharma, Divakar Vashisth, Kuldeep Sarkar, Upendra Kumar Singh\",\"doi\":\"arxiv-2408.02414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint inversion of geophysical datasets is instrumental in subsurface\\ncharacterization and has garnered significant popularity, leveraging\\ninformation from multiple geophysical methods. In this study, we implemented\\nthe joint inversion of DC resistivity with MT data using the Multi-Objective\\nGrey Wolf Optimization (MOGWO) algorithm. As an extension of the widely-used\\nGrey Wolf Optimization algorithm, MOGWO offers a suite of pareto optimal\\nnon-dominated solutions, eliminating the need for weighting parameters in the\\nobjective functions. This set of non-dominated predictions also facilitates the\\nunderstanding of uncertainty in the predicted model parameters. Through a field\\ncase study in the region around Broken Hill in South Central Australia, the\\npaper showcases MOGWO's capabilities in joint inversion, providing confident\\nestimates of the model parameters (resistivity profiles), as indicated by a\\nnarrow spread in the suite of solutions. The obtained results are comparable to\\nwell established methodologies and highlight the efficacy of MOGWO as a\\nreliable tool in geophysical exploration.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地球物理数据集的联合反演在地下特征描述中非常重要,它充分利用了多种地球物理方法的信息,因而大受欢迎。在本研究中,我们使用多目标灰狼优化(MOGWO)算法实现了直流电阻率与 MT 数据的联合反演。作为广泛使用的灰狼优化算法的扩展,MOGWO 提供了一套帕累托最优非支配解,省去了目标函数中的权重参数。这套非主导预测还有助于理解预测模型参数的不确定性。通过对澳大利亚中南部布罗肯希尔周边地区的实地案例研究,论文展示了 MOGWO 在联合反演方面的能力,提供了对模型参数(电阻率剖面)的可靠估计,这体现在整套解决方案的窄幅分布上。所获得的结果可与成熟的方法相媲美,凸显了 MOGWO 作为地球物理勘探可靠工具的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Inversion of DC Resistivity and MT Data using Multi-Objective Grey Wolf Optimization
Joint inversion of geophysical datasets is instrumental in subsurface characterization and has garnered significant popularity, leveraging information from multiple geophysical methods. In this study, we implemented the joint inversion of DC resistivity with MT data using the Multi-Objective Grey Wolf Optimization (MOGWO) algorithm. As an extension of the widely-used Grey Wolf Optimization algorithm, MOGWO offers a suite of pareto optimal non-dominated solutions, eliminating the need for weighting parameters in the objective functions. This set of non-dominated predictions also facilitates the understanding of uncertainty in the predicted model parameters. Through a field case study in the region around Broken Hill in South Central Australia, the paper showcases MOGWO's capabilities in joint inversion, providing confident estimates of the model parameters (resistivity profiles), as indicated by a narrow spread in the suite of solutions. The obtained results are comparable to well established methodologies and highlight the efficacy of MOGWO as a reliable tool in geophysical exploration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信