多代理强化学习的异步学分分配框架

Yongheng Liang, Hejun Wu, Haitao Wang, Hao Cai
{"title":"多代理强化学习的异步学分分配框架","authors":"Yongheng Liang, Hejun Wu, Haitao Wang, Hao Cai","doi":"arxiv-2408.03692","DOIUrl":null,"url":null,"abstract":"Credit assignment is a core problem that distinguishes agents' marginal\ncontributions for optimizing cooperative strategies in multi-agent\nreinforcement learning (MARL). Current credit assignment methods usually assume\nsynchronous decision-making among agents. However, a prerequisite for many\nrealistic cooperative tasks is asynchronous decision-making by agents, without\nwaiting for others to avoid disastrous consequences. To address this issue, we\npropose an asynchronous credit assignment framework with a problem model called\nADEX-POMDP and a multiplicative value decomposition (MVD) algorithm. ADEX-POMDP\nis an asynchronous problem model with extra virtual agents for a decentralized\npartially observable markov decision process. We prove that ADEX-POMDP\npreserves both the task equilibrium and the algorithm convergence. MVD utilizes\nmultiplicative interaction to efficiently capture the interactions of\nasynchronous decisions, and we theoretically demonstrate its advantages in\nhandling asynchronous tasks. Experimental results show that on two asynchronous\ndecision-making benchmarks, Overcooked and POAC, MVD not only consistently\noutperforms state-of-the-art MARL methods but also provides the\ninterpretability for asynchronous cooperation.","PeriodicalId":501315,"journal":{"name":"arXiv - CS - Multiagent Systems","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asynchronous Credit Assignment Framework for Multi-Agent Reinforcement Learning\",\"authors\":\"Yongheng Liang, Hejun Wu, Haitao Wang, Hao Cai\",\"doi\":\"arxiv-2408.03692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Credit assignment is a core problem that distinguishes agents' marginal\\ncontributions for optimizing cooperative strategies in multi-agent\\nreinforcement learning (MARL). Current credit assignment methods usually assume\\nsynchronous decision-making among agents. However, a prerequisite for many\\nrealistic cooperative tasks is asynchronous decision-making by agents, without\\nwaiting for others to avoid disastrous consequences. To address this issue, we\\npropose an asynchronous credit assignment framework with a problem model called\\nADEX-POMDP and a multiplicative value decomposition (MVD) algorithm. ADEX-POMDP\\nis an asynchronous problem model with extra virtual agents for a decentralized\\npartially observable markov decision process. We prove that ADEX-POMDP\\npreserves both the task equilibrium and the algorithm convergence. MVD utilizes\\nmultiplicative interaction to efficiently capture the interactions of\\nasynchronous decisions, and we theoretically demonstrate its advantages in\\nhandling asynchronous tasks. Experimental results show that on two asynchronous\\ndecision-making benchmarks, Overcooked and POAC, MVD not only consistently\\noutperforms state-of-the-art MARL methods but also provides the\\ninterpretability for asynchronous cooperation.\",\"PeriodicalId\":501315,\"journal\":{\"name\":\"arXiv - CS - Multiagent Systems\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.03692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.03692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多代理强化学习(MARL)中,信用分配是区分代理边际贡献以优化合作策略的核心问题。目前的信用分配方法通常假定代理之间的决策是同步的。然而,许多现实合作任务的先决条件是代理间的异步决策,而无需等待他人来避免灾难性后果。为了解决这个问题,我们提出了一种异步信用分配框架,其问题模型称为 ADEX-POMDP 和乘法值分解(MVD)算法。ADEX-POMDP 是一个异步问题模型,其中包含一个分散的部分可观测马尔可夫决策过程的额外虚拟代理。我们证明 ADEX-POMDP 既能保持任务均衡,又能保持算法收敛。MVD 利用乘法交互来有效捕捉异步决策的交互,我们从理论上证明了它在处理异步任务时的优势。实验结果表明,在 Overcooked 和 POAC 这两个异步决策基准上,MVD 不仅始终优于最先进的 MARL 方法,而且还为异步合作提供了可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asynchronous Credit Assignment Framework for Multi-Agent Reinforcement Learning
Credit assignment is a core problem that distinguishes agents' marginal contributions for optimizing cooperative strategies in multi-agent reinforcement learning (MARL). Current credit assignment methods usually assume synchronous decision-making among agents. However, a prerequisite for many realistic cooperative tasks is asynchronous decision-making by agents, without waiting for others to avoid disastrous consequences. To address this issue, we propose an asynchronous credit assignment framework with a problem model called ADEX-POMDP and a multiplicative value decomposition (MVD) algorithm. ADEX-POMDP is an asynchronous problem model with extra virtual agents for a decentralized partially observable markov decision process. We prove that ADEX-POMDP preserves both the task equilibrium and the algorithm convergence. MVD utilizes multiplicative interaction to efficiently capture the interactions of asynchronous decisions, and we theoretically demonstrate its advantages in handling asynchronous tasks. Experimental results show that on two asynchronous decision-making benchmarks, Overcooked and POAC, MVD not only consistently outperforms state-of-the-art MARL methods but also provides the interpretability for asynchronous cooperation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信