多项式映射的热带非完备性集合

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Boulos El Hilany
{"title":"多项式映射的热带非完备性集合","authors":"Boulos El Hilany","doi":"10.1007/s00454-024-00684-4","DOIUrl":null,"url":null,"abstract":"<p>We study some discrete invariants of Newton non-degenerate polynomial maps <span>\\(f: {\\mathbb {K}}^n \\rightarrow {\\mathbb {K}}^n\\)</span> defined over an algebraically closed field of Puiseux series <span>\\({\\mathbb {K}}\\)</span>, equipped with a non-trivial valuation. It is known that the set <span>\\({\\mathcal {S}}(f)\\)</span> of points at which <i>f</i> is not finite forms an algebraic hypersurface in <span>\\({\\mathbb {K}}^n\\)</span>. The coordinate-wise valuation of <span>\\({\\mathcal {S}}(f)\\cap ({\\mathbb {K}}^*)^n\\)</span> is a piecewise-linear object in <span>\\({\\mathbb {R}}^n\\)</span>, which we call the tropical non-properness set of <i>f</i>. We show that the tropical polynomial map corresponding to <i>f</i> has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of <i>f</i>. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of <span>\\({\\mathcal {S}}(f)\\)</span> in terms of multivariate resultants.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Tropical Non-Properness Set of a Polynomial Map\",\"authors\":\"Boulos El Hilany\",\"doi\":\"10.1007/s00454-024-00684-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study some discrete invariants of Newton non-degenerate polynomial maps <span>\\\\(f: {\\\\mathbb {K}}^n \\\\rightarrow {\\\\mathbb {K}}^n\\\\)</span> defined over an algebraically closed field of Puiseux series <span>\\\\({\\\\mathbb {K}}\\\\)</span>, equipped with a non-trivial valuation. It is known that the set <span>\\\\({\\\\mathcal {S}}(f)\\\\)</span> of points at which <i>f</i> is not finite forms an algebraic hypersurface in <span>\\\\({\\\\mathbb {K}}^n\\\\)</span>. The coordinate-wise valuation of <span>\\\\({\\\\mathcal {S}}(f)\\\\cap ({\\\\mathbb {K}}^*)^n\\\\)</span> is a piecewise-linear object in <span>\\\\({\\\\mathbb {R}}^n\\\\)</span>, which we call the tropical non-properness set of <i>f</i>. We show that the tropical polynomial map corresponding to <i>f</i> has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of <i>f</i>. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of <span>\\\\({\\\\mathcal {S}}(f)\\\\)</span> in terms of multivariate resultants.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00684-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00684-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究牛顿非退化多项式映射 \(f: {\mathbb {K}}^n \rightarrow {\mathbb {K}}^n\) 的一些离散不变式,这些映射定义在一个代数闭域的普伊塞克斯数列 \({\mathbb {K}}\) 上,并配有一个非三重估值。众所周知,f 不是有限的点的集合 \({\mathcal {S}}(f)\) 在 \({\mathbb {K}}^n\) 中形成了一个代数超曲面。我们证明与 f 对应的热带多项式映射在 f 的热带非良性集上有满足特定组合退化条件的纤维。然后,我们利用这一描述概述了计算该集合的多面体方法,并恢复了复多项式映射非有限性集合的牛顿多面体对偶扇形。这些证明依赖于热带几何中的经典对应和结构结果,并结合了多元结果对 \({mathcal{S}}(f)\)的新描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Tropical Non-Properness Set of a Polynomial Map

The Tropical Non-Properness Set of a Polynomial Map

We study some discrete invariants of Newton non-degenerate polynomial maps \(f: {\mathbb {K}}^n \rightarrow {\mathbb {K}}^n\) defined over an algebraically closed field of Puiseux series \({\mathbb {K}}\), equipped with a non-trivial valuation. It is known that the set \({\mathcal {S}}(f)\) of points at which f is not finite forms an algebraic hypersurface in \({\mathbb {K}}^n\). The coordinate-wise valuation of \({\mathcal {S}}(f)\cap ({\mathbb {K}}^*)^n\) is a piecewise-linear object in \({\mathbb {R}}^n\), which we call the tropical non-properness set of f. We show that the tropical polynomial map corresponding to f has fibers satisfying a particular combinatorial degeneracy condition exactly over points in the tropical non-properness set of f. We then use this description to outline a polyhedral method for computing this set, and to recover the fan dual to the Newton polytope of the set at which a complex polynomial map is not finite. The proofs rely on classical correspondence and structural results from tropical geometry, combined with a new description of \({\mathcal {S}}(f)\) in terms of multivariate resultants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信