使用应变计阵列校准 DAS 记录的应变振幅

Thomas ForbrigerKarlsruhe Institute of Technology, Nasim KaramzadehKarlsruhe Institute of Technologynow at University of Münster Institut für Geophysik, Münster, Germany, Jérôme AzzolaKarlsruhe Institute of Technology, Emmanuel GaucherKarlsruhe Institute of Technology, Rudolf Widmer-SchnidrigInstitute of Geodesy, University of Stuttgart, Stuttgart, Germany, Andreas RietbrockKarlsruhe Institute of Technology
{"title":"使用应变计阵列校准 DAS 记录的应变振幅","authors":"Thomas ForbrigerKarlsruhe Institute of Technology, Nasim KaramzadehKarlsruhe Institute of Technologynow at University of Münster Institut für Geophysik, Münster, Germany, Jérôme AzzolaKarlsruhe Institute of Technology, Emmanuel GaucherKarlsruhe Institute of Technology, Rudolf Widmer-SchnidrigInstitute of Geodesy, University of Stuttgart, Stuttgart, Germany, Andreas RietbrockKarlsruhe Institute of Technology","doi":"arxiv-2408.01151","DOIUrl":null,"url":null,"abstract":"The power of distributed acoustic sensing (DAS) lies in its ability to sample\ndeformation signals along an optical fiber at hundreds of locations with only\none interrogation unit (IU). While the IU is calibrated to record 'fiber\nstrain', the properties of the cable and its coupling to the rock control the\n'strain transfer rate' and hence how much of 'rock strain' is represented in\nthe recorded signal. We use DAS recordings in an underground installation\ncolocated with an array of strainmeters in order to calibrate the 'strain\ntransfer rate' in situ, using earthquake signals between 0.05 Hz and 0.1 Hz. A\ntight-buffered cable and a standard loose-tube telecommunication cable (running\nin parallel) are used, where a section of both cables loaded down by loose sand\nand sand bags is compared to a section, where cables are just unreeled on the\nfloor. The 'strain transfer rate' varies between 0.13 and 0.53 depending on\ncable and installation type. The sandbags show no obvious effect and the\ntight-buffered cable generally provides a larger 'strain transfer rate'.\nCalibration of the 'strain transfer rate' with respect to the strainmeter does\nnot depend on wave propagation parameters. Hence it is applicable to the large\namplitude surface wave signal in a strain component almost perpendicular to the\ngreat-circle direction for which a waveform comparison with seismometer data\ndoes not work. The noise background for 'rock strain' in the investigated band\nis found at about an rms-amplitude of 0.1 nstrain in 1/6 decade for the\ntight-buffered cable. This allows a detection of marine microseisms at times of\nhigh microseism amplitude.","PeriodicalId":501270,"journal":{"name":"arXiv - PHYS - Geophysics","volume":"90 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibration of the strain amplitude recorded with DAS using a strainmeter array\",\"authors\":\"Thomas ForbrigerKarlsruhe Institute of Technology, Nasim KaramzadehKarlsruhe Institute of Technologynow at University of Münster Institut für Geophysik, Münster, Germany, Jérôme AzzolaKarlsruhe Institute of Technology, Emmanuel GaucherKarlsruhe Institute of Technology, Rudolf Widmer-SchnidrigInstitute of Geodesy, University of Stuttgart, Stuttgart, Germany, Andreas RietbrockKarlsruhe Institute of Technology\",\"doi\":\"arxiv-2408.01151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power of distributed acoustic sensing (DAS) lies in its ability to sample\\ndeformation signals along an optical fiber at hundreds of locations with only\\none interrogation unit (IU). While the IU is calibrated to record 'fiber\\nstrain', the properties of the cable and its coupling to the rock control the\\n'strain transfer rate' and hence how much of 'rock strain' is represented in\\nthe recorded signal. We use DAS recordings in an underground installation\\ncolocated with an array of strainmeters in order to calibrate the 'strain\\ntransfer rate' in situ, using earthquake signals between 0.05 Hz and 0.1 Hz. A\\ntight-buffered cable and a standard loose-tube telecommunication cable (running\\nin parallel) are used, where a section of both cables loaded down by loose sand\\nand sand bags is compared to a section, where cables are just unreeled on the\\nfloor. The 'strain transfer rate' varies between 0.13 and 0.53 depending on\\ncable and installation type. The sandbags show no obvious effect and the\\ntight-buffered cable generally provides a larger 'strain transfer rate'.\\nCalibration of the 'strain transfer rate' with respect to the strainmeter does\\nnot depend on wave propagation parameters. Hence it is applicable to the large\\namplitude surface wave signal in a strain component almost perpendicular to the\\ngreat-circle direction for which a waveform comparison with seismometer data\\ndoes not work. The noise background for 'rock strain' in the investigated band\\nis found at about an rms-amplitude of 0.1 nstrain in 1/6 decade for the\\ntight-buffered cable. This allows a detection of marine microseisms at times of\\nhigh microseism amplitude.\",\"PeriodicalId\":501270,\"journal\":{\"name\":\"arXiv - PHYS - Geophysics\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Geophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.01151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Geophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.01151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

分布式声学传感技术(DAS)的强大之处在于,它只需一个询问单元(IU),就能在数百个位置对光纤沿线的形变信号进行采样。虽然 IU 经过校准以记录 "光纤应变",但光缆的特性及其与岩石的耦合控制着 "应变传递率",从而控制着记录信号中 "岩石应变 "的大小。我们使用 DAS 记录地下装置中的应变计阵列,利用 0.05 Hz 和 0.1 Hz 之间的地震信号就地校准 "应变传递率"。我们使用了一根直管电缆和一根标准的松套管通信电缆(平行运行),将两根电缆上都装有松散沙粒和沙袋的部分与电缆在地面上松开的部分进行比较。应变传递率 "介于 0.13 和 0.53 之间,取决于电缆和安装类型。沙袋没有明显的影响,而密闭缓冲缆索通常提供更大的 "应变传递率"。因此,它适用于几乎垂直于大圆方向的应变分量中的大振幅表面波信号,在这种情况下,与地震仪数据进行波形比较是无效的。在所研究的波段中,发现密闭缓冲电缆的 "岩石应变 "噪声背景的均方根振幅约为 0.1 nstrain in 1/6 decade。这样就可以在微震振幅较高时探测到海洋微震。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibration of the strain amplitude recorded with DAS using a strainmeter array
The power of distributed acoustic sensing (DAS) lies in its ability to sample deformation signals along an optical fiber at hundreds of locations with only one interrogation unit (IU). While the IU is calibrated to record 'fiber strain', the properties of the cable and its coupling to the rock control the 'strain transfer rate' and hence how much of 'rock strain' is represented in the recorded signal. We use DAS recordings in an underground installation colocated with an array of strainmeters in order to calibrate the 'strain transfer rate' in situ, using earthquake signals between 0.05 Hz and 0.1 Hz. A tight-buffered cable and a standard loose-tube telecommunication cable (running in parallel) are used, where a section of both cables loaded down by loose sand and sand bags is compared to a section, where cables are just unreeled on the floor. The 'strain transfer rate' varies between 0.13 and 0.53 depending on cable and installation type. The sandbags show no obvious effect and the tight-buffered cable generally provides a larger 'strain transfer rate'. Calibration of the 'strain transfer rate' with respect to the strainmeter does not depend on wave propagation parameters. Hence it is applicable to the large amplitude surface wave signal in a strain component almost perpendicular to the great-circle direction for which a waveform comparison with seismometer data does not work. The noise background for 'rock strain' in the investigated band is found at about an rms-amplitude of 0.1 nstrain in 1/6 decade for the tight-buffered cable. This allows a detection of marine microseisms at times of high microseism amplitude.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信