量子拓扑学中的循环和模块微观世界原理

Lukas Woike
{"title":"量子拓扑学中的循环和模块微观世界原理","authors":"Lukas Woike","doi":"arxiv-2408.02644","DOIUrl":null,"url":null,"abstract":"Monoidal categories with additional structure such as a braiding or some form\nof duality abound in quantum topology. They often appear in tandem with\nFrobenius algebras inside them. Motivations for this range from the theory of\nmodule categories to the construction of correlators in conformal field theory.\nWe generalize the Baez-Dolan microcosm principle to consistently describe all\nthese types of algebras by extending it to cyclic and modular algebras in the\nsense of Getzler-Kapranov. Our main result links the microcosm principle for\ncyclic algebras to the one for modular algebras via Costello's modular\nenvelope. The result can be understood as a local-to-global construction for\nvarious flavors of Frobenius algebras that substantially generalizes and\nunifies the available, and often intrinsically semisimple methods using for\nexample triangulations, state-sum constructions or skein theory. Several\napplications of the main result in conformal field theory are presented: We\nclassify consistent systems of correlators for open conformal field theories\nand show that the genus zero correlators for logarithmic conformal field\ntheories constructed by Fuchs-Schweigert can be uniquely extended to\nhandlebodies. This establishes a very general correspondence between full genus\nzero conformal field theory in dimension two and skein theory in dimension\nthree.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Cyclic and Modular Microcosm Principle in Quantum Topology\",\"authors\":\"Lukas Woike\",\"doi\":\"arxiv-2408.02644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Monoidal categories with additional structure such as a braiding or some form\\nof duality abound in quantum topology. They often appear in tandem with\\nFrobenius algebras inside them. Motivations for this range from the theory of\\nmodule categories to the construction of correlators in conformal field theory.\\nWe generalize the Baez-Dolan microcosm principle to consistently describe all\\nthese types of algebras by extending it to cyclic and modular algebras in the\\nsense of Getzler-Kapranov. Our main result links the microcosm principle for\\ncyclic algebras to the one for modular algebras via Costello's modular\\nenvelope. The result can be understood as a local-to-global construction for\\nvarious flavors of Frobenius algebras that substantially generalizes and\\nunifies the available, and often intrinsically semisimple methods using for\\nexample triangulations, state-sum constructions or skein theory. Several\\napplications of the main result in conformal field theory are presented: We\\nclassify consistent systems of correlators for open conformal field theories\\nand show that the genus zero correlators for logarithmic conformal field\\ntheories constructed by Fuchs-Schweigert can be uniquely extended to\\nhandlebodies. This establishes a very general correspondence between full genus\\nzero conformal field theory in dimension two and skein theory in dimension\\nthree.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.02644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.02644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在量子拓扑学中,具有附加结构(如编织或某种形式的对偶性)的单元范畴比比皆是。它们经常与其中的弗罗本尼乌斯代数一起出现。我们将贝兹-多兰微观世界原理推广到格茨勒-卡普拉诺夫意义上的循环和模态布拉斯,从而对所有这些类型的布拉斯进行一致的描述。我们的主要结果通过科斯特洛的模发展,将循环代数的微观世界原理与模代数的微观世界原理联系起来。这一结果可以理解为从局部到全局的构造,适用于各种形式的弗罗贝纽斯代数,极大地推广和统一了现有的,而且通常是本质上半简单的方法,即使用前例三角剖分、状态和构造或扦理论。本文介绍了主要结果在共形场理论中的几种应用:我们对开放共形场论的一致关联子系统进行了分类,并证明了由富克斯-施韦格特构建的对数共形场论的零属关联子可以唯一地扩展到手柄体。这就在二维的全零属共形场理论和三维的矢量理论之间建立了非常一般的对应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Cyclic and Modular Microcosm Principle in Quantum Topology
Monoidal categories with additional structure such as a braiding or some form of duality abound in quantum topology. They often appear in tandem with Frobenius algebras inside them. Motivations for this range from the theory of module categories to the construction of correlators in conformal field theory. We generalize the Baez-Dolan microcosm principle to consistently describe all these types of algebras by extending it to cyclic and modular algebras in the sense of Getzler-Kapranov. Our main result links the microcosm principle for cyclic algebras to the one for modular algebras via Costello's modular envelope. The result can be understood as a local-to-global construction for various flavors of Frobenius algebras that substantially generalizes and unifies the available, and often intrinsically semisimple methods using for example triangulations, state-sum constructions or skein theory. Several applications of the main result in conformal field theory are presented: We classify consistent systems of correlators for open conformal field theories and show that the genus zero correlators for logarithmic conformal field theories constructed by Fuchs-Schweigert can be uniquely extended to handlebodies. This establishes a very general correspondence between full genus zero conformal field theory in dimension two and skein theory in dimension three.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信