扭曲的 q-Yangians 和 Sklyanin 行列式

Naihuan Jing, Jian Zhang
{"title":"扭曲的 q-Yangians 和 Sklyanin 行列式","authors":"Naihuan Jing, Jian Zhang","doi":"arxiv-2408.04340","DOIUrl":null,"url":null,"abstract":"$q$-Yangians can be viewed as quantum deformations of the upper triangular\nloop Lie algebras, and also be viewed as deformation of the Yangian algebra. In\nthis paper, we study the twisted $q$-Yangians as coideal subalgebras of the\nquantum affine algebra introduced by Molev, Ragoucy and Sorba. We investigate\nthe invariant theory of the quantum symmetric spaces in affine types $AI, AII$\nand use the Sklyanin determinants to study the invariant theory and show that\nthey also obey classical type identities similar to the quantum coordinate\nalgebras of finite types.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted q-Yangians and Sklyanin determinants\",\"authors\":\"Naihuan Jing, Jian Zhang\",\"doi\":\"arxiv-2408.04340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"$q$-Yangians can be viewed as quantum deformations of the upper triangular\\nloop Lie algebras, and also be viewed as deformation of the Yangian algebra. In\\nthis paper, we study the twisted $q$-Yangians as coideal subalgebras of the\\nquantum affine algebra introduced by Molev, Ragoucy and Sorba. We investigate\\nthe invariant theory of the quantum symmetric spaces in affine types $AI, AII$\\nand use the Sklyanin determinants to study the invariant theory and show that\\nthey also obey classical type identities similar to the quantum coordinate\\nalgebras of finite types.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.04340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.04340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

q$-Yangians 可以看作是上三角环李代数的量子变形,也可以看作是Yangian 代数的变形。在本文中,我们将扭曲的 q$-Yangians 视为 Molev、Ragoucy 和 Sorba 引入的量子仿射代数的共边子代数进行研究。我们研究了仿射类型$AI, AII$中量子对称空间的不变量理论,并利用斯克里亚宁行列式来研究不变量理论,结果表明它们也服从类似于有限类型量子坐标系的经典类型标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted q-Yangians and Sklyanin determinants
$q$-Yangians can be viewed as quantum deformations of the upper triangular loop Lie algebras, and also be viewed as deformation of the Yangian algebra. In this paper, we study the twisted $q$-Yangians as coideal subalgebras of the quantum affine algebra introduced by Molev, Ragoucy and Sorba. We investigate the invariant theory of the quantum symmetric spaces in affine types $AI, AII$ and use the Sklyanin determinants to study the invariant theory and show that they also obey classical type identities similar to the quantum coordinate algebras of finite types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信