{"title":"通过一次测量确定混合成像的边界","authors":"Tommi Brander, Torbjørn Ringholm","doi":"10.1515/jiip-2019-0083","DOIUrl":null,"url":null,"abstract":"We recover the conductivity σ at the boundary of a domain from a combination of Dirichlet and Neumann boundary data and generalized power/current density data at the boundary, from a single quite arbitrary set of data, in AET or CDII. The argument is elementary, algebraic and local. More generally, we consider the variable exponent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mrow> <m:mo rspace=\"4.2pt\" stretchy=\"false\">(</m:mo> <m:mo rspace=\"4.2pt\">⋅</m:mo> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2019-0083_eq_0208.png\"/> <jats:tex-math>{p(\\,\\cdot\\,)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian as a forward model with the interior density data <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\"false\">|</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\"false\">|</m:mo> </m:mrow> <m:mi>q</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2019-0083_eq_0184.png\"/> <jats:tex-math>{\\sigma|\\nabla u|^{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and find out that single measurement specifies the boundary conductivity when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_jiip-2019-0083_eq_0222.png\"/> <jats:tex-math>{p-q\\geq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and otherwise the measurement specifies two alternatives. We present heuristics for selecting between these alternatives. Both <jats:italic>p</jats:italic> and <jats:italic>q</jats:italic> may depend on the spatial variable <jats:italic>x</jats:italic>, but they are assumed to be a priori known. We illustrate the practical situations with numerical examples with the code available.","PeriodicalId":50171,"journal":{"name":"Journal of Inverse and Ill-Posed Problems","volume":"18 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Boundary determination for hybrid imaging from a single measurement\",\"authors\":\"Tommi Brander, Torbjørn Ringholm\",\"doi\":\"10.1515/jiip-2019-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We recover the conductivity σ at the boundary of a domain from a combination of Dirichlet and Neumann boundary data and generalized power/current density data at the boundary, from a single quite arbitrary set of data, in AET or CDII. The argument is elementary, algebraic and local. More generally, we consider the variable exponent <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>p</m:mi> <m:mo></m:mo> <m:mrow> <m:mo rspace=\\\"4.2pt\\\" stretchy=\\\"false\\\">(</m:mo> <m:mo rspace=\\\"4.2pt\\\">⋅</m:mo> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2019-0083_eq_0208.png\\\"/> <jats:tex-math>{p(\\\\,\\\\cdot\\\\,)}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian as a forward model with the interior density data <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>σ</m:mi> <m:mo></m:mo> <m:msup> <m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> <m:mrow> <m:mo>∇</m:mo> <m:mo></m:mo> <m:mi>u</m:mi> </m:mrow> <m:mo stretchy=\\\"false\\\">|</m:mo> </m:mrow> <m:mi>q</m:mi> </m:msup> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2019-0083_eq_0184.png\\\"/> <jats:tex-math>{\\\\sigma|\\\\nabla u|^{q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and find out that single measurement specifies the boundary conductivity when <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>-</m:mo> <m:mi>q</m:mi> </m:mrow> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_jiip-2019-0083_eq_0222.png\\\"/> <jats:tex-math>{p-q\\\\geq 1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and otherwise the measurement specifies two alternatives. We present heuristics for selecting between these alternatives. Both <jats:italic>p</jats:italic> and <jats:italic>q</jats:italic> may depend on the spatial variable <jats:italic>x</jats:italic>, but they are assumed to be a priori known. We illustrate the practical situations with numerical examples with the code available.\",\"PeriodicalId\":50171,\"journal\":{\"name\":\"Journal of Inverse and Ill-Posed Problems\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inverse and Ill-Posed Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jiip-2019-0083\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inverse and Ill-Posed Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jiip-2019-0083","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们从 AET 或 CDII 中的一组相当任意的数据中,结合 Dirichlet 和 Neumann 边界数据以及边界处的广义功率/电流密度数据,恢复域边界处的电导率 σ。论证是基本的、代数的和局部的。更一般地说,我们将可变指数 p ( ⋅ ) {p(\,\cdot\,)} - 拉普拉斯视为一个前向模型,其内部密度数据为 σ | ∇ u | q {\sigma|\nabla u|^{q}} ,并发现单次测量就能指定边界的功率/电流密度数据。 并发现当 p - q ≥ 1 {p-q\geq 1} 时,单次测量指定了边界电导率,否则测量指定了两个备选方案。 否则,测量会指定两个备选方案。我们提出了在这些备选方案中进行选择的启发式方法。p 和 q 都可能取决于空间变量 x,但假设它们是先验已知的。我们将用可用代码中的数值示例来说明实际情况。
Boundary determination for hybrid imaging from a single measurement
We recover the conductivity σ at the boundary of a domain from a combination of Dirichlet and Neumann boundary data and generalized power/current density data at the boundary, from a single quite arbitrary set of data, in AET or CDII. The argument is elementary, algebraic and local. More generally, we consider the variable exponent p(⋅){p(\,\cdot\,)}-Laplacian as a forward model with the interior density data σ|∇u|q{\sigma|\nabla u|^{q}}, and find out that single measurement specifies the boundary conductivity when p-q≥1{p-q\geq 1}, and otherwise the measurement specifies two alternatives. We present heuristics for selecting between these alternatives. Both p and q may depend on the spatial variable x, but they are assumed to be a priori known. We illustrate the practical situations with numerical examples with the code available.
期刊介绍:
This journal aims to present original articles on the theory, numerics and applications of inverse and ill-posed problems. These inverse and ill-posed problems arise in mathematical physics and mathematical analysis, geophysics, acoustics, electrodynamics, tomography, medicine, ecology, financial mathematics etc. Articles on the construction and justification of new numerical algorithms of inverse problem solutions are also published.
Issues of the Journal of Inverse and Ill-Posed Problems contain high quality papers which have an innovative approach and topical interest.
The following topics are covered:
Inverse problems
existence and uniqueness theorems
stability estimates
optimization and identification problems
numerical methods
Ill-posed problems
regularization theory
operator equations
integral geometry
Applications
inverse problems in geophysics, electrodynamics and acoustics
inverse problems in ecology
inverse and ill-posed problems in medicine
mathematical problems of tomography