{"title":"在全球模型的基础上建立有限区域模型:一致性研究","authors":"Yi Zhang, Zhuang Liu, Yiming Wang, Siyuan Chen","doi":"10.1002/qj.4804","DOIUrl":null,"url":null,"abstract":"A limited‐area model (LAM) is established based on a global model (Global–Regional Integrated Forecast System; GRIST). GRIST–LAM inherits all the technical features of its global counterpart, enabling independent regional weather and climate modeling. The key advancement involves extending the original dynamical core to integrate it under the lateral boundary conditions (LBCs). As an initial development and evaluation study, this paper focuses on the consistency issue between the LAM and the global model. Three perfect‐model tests, using global solutions as LBCs and background truths, were performed to evaluate the LAM behaviors. In the pure dynamical core test, the LBC errors do not compromise the solutions within the interior domain. However, certain configurations can lead to more discontinuous solutions at the domain boundary. The solution error for a specified region decreases as the domain size increases when all other factors are equal. A small error pulse is generated during the initial stage of integration due to the presence of artificial transient waves induced by the LBCs. The model generates fine‐scale details and smaller errors based on coarser‐resolution LBCs. The consistency between LAM and LBC also influences the errors. The climate simulations demonstrate that both hydrostatic and non‐hydrostatic LAMs can reach statistical equilibrium. Regional model climates in the interior domain have higher quality but are sensitive to domain size and LBC configuration. Using a variable LBC coefficient is helpful to alleviate the artificial precipitation at the boundary. In the kilometer‐scale test, the global variable‐resolution model and its LAM counterpart show comparable results. Their performance is competitive with that of a uniform‐resolution global storm‐resolving simulation. Global variable‐resolution and LAM generate higher magnitudes in the tail part of the kinetic energy spectra due to higher local resolution and produce a consistent time evolution of precipitation. The broad implication of this study is also discussed.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"73 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishing a limited‐area model based on a global model: A consistency study\",\"authors\":\"Yi Zhang, Zhuang Liu, Yiming Wang, Siyuan Chen\",\"doi\":\"10.1002/qj.4804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A limited‐area model (LAM) is established based on a global model (Global–Regional Integrated Forecast System; GRIST). GRIST–LAM inherits all the technical features of its global counterpart, enabling independent regional weather and climate modeling. The key advancement involves extending the original dynamical core to integrate it under the lateral boundary conditions (LBCs). As an initial development and evaluation study, this paper focuses on the consistency issue between the LAM and the global model. Three perfect‐model tests, using global solutions as LBCs and background truths, were performed to evaluate the LAM behaviors. In the pure dynamical core test, the LBC errors do not compromise the solutions within the interior domain. However, certain configurations can lead to more discontinuous solutions at the domain boundary. The solution error for a specified region decreases as the domain size increases when all other factors are equal. A small error pulse is generated during the initial stage of integration due to the presence of artificial transient waves induced by the LBCs. The model generates fine‐scale details and smaller errors based on coarser‐resolution LBCs. The consistency between LAM and LBC also influences the errors. The climate simulations demonstrate that both hydrostatic and non‐hydrostatic LAMs can reach statistical equilibrium. Regional model climates in the interior domain have higher quality but are sensitive to domain size and LBC configuration. Using a variable LBC coefficient is helpful to alleviate the artificial precipitation at the boundary. In the kilometer‐scale test, the global variable‐resolution model and its LAM counterpart show comparable results. Their performance is competitive with that of a uniform‐resolution global storm‐resolving simulation. Global variable‐resolution and LAM generate higher magnitudes in the tail part of the kinetic energy spectra due to higher local resolution and produce a consistent time evolution of precipitation. The broad implication of this study is also discussed.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4804\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4804","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Establishing a limited‐area model based on a global model: A consistency study
A limited‐area model (LAM) is established based on a global model (Global–Regional Integrated Forecast System; GRIST). GRIST–LAM inherits all the technical features of its global counterpart, enabling independent regional weather and climate modeling. The key advancement involves extending the original dynamical core to integrate it under the lateral boundary conditions (LBCs). As an initial development and evaluation study, this paper focuses on the consistency issue between the LAM and the global model. Three perfect‐model tests, using global solutions as LBCs and background truths, were performed to evaluate the LAM behaviors. In the pure dynamical core test, the LBC errors do not compromise the solutions within the interior domain. However, certain configurations can lead to more discontinuous solutions at the domain boundary. The solution error for a specified region decreases as the domain size increases when all other factors are equal. A small error pulse is generated during the initial stage of integration due to the presence of artificial transient waves induced by the LBCs. The model generates fine‐scale details and smaller errors based on coarser‐resolution LBCs. The consistency between LAM and LBC also influences the errors. The climate simulations demonstrate that both hydrostatic and non‐hydrostatic LAMs can reach statistical equilibrium. Regional model climates in the interior domain have higher quality but are sensitive to domain size and LBC configuration. Using a variable LBC coefficient is helpful to alleviate the artificial precipitation at the boundary. In the kilometer‐scale test, the global variable‐resolution model and its LAM counterpart show comparable results. Their performance is competitive with that of a uniform‐resolution global storm‐resolving simulation. Global variable‐resolution and LAM generate higher magnitudes in the tail part of the kinetic energy spectra due to higher local resolution and produce a consistent time evolution of precipitation. The broad implication of this study is also discussed.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.