{"title":"由于阿留申低纬度的夸大变化,北环模式太平洋中心的模式偏差较大","authors":"Simon H. Lee, Lorenzo M. Polvani","doi":"10.1002/qj.4825","DOIUrl":null,"url":null,"abstract":"The Northern Annular Mode (NAM) is traditionally defined as the leading empirical orthogonal function (EOF) of mean sea‐level pressure (MSLP) anomalies during winter. Previous studies have shown that the Pacific centre‐of‐action of the NAM is typically more amplified in models than in reanalysis. Here, we analyse the NAM in hindcasts from nine seasonal prediction models over 1993/1994–2016/2017. In all the models, the Pacific centre‐of‐action is much larger than in reanalysis over that period, during which the NAM and the North Atlantic Oscillation (NAO) are almost indistinguishable. As a result, the NAM in the models is correlated with Aleutian Low variability around four times more strongly than in reanalysis. We show that this discrepancy can be explained primarily by the amplitude of Aleutian Low variability, which is on average 17% higher in models than in reanalysis, with a secondary effect from a stronger correlation between the Aleutian Low and NAO. When the NAM is computed using zonally averaged MSLP, the Aleutian Low amplitude does not influence the pattern directly. Instead, the amplitude of the Pacific centre‐of‐action is governed primarily by the correlation between the Aleutian Low and NAO, reducing the apparent Pacific biases in models. While the two methods yield almost identical results in reanalysis, the large Aleutian Low biases result in differences when applied to model data. Modifying the MSLP statistically to alter the Aleutian Low amplitude reveals that the spatial pattern of the traditionally defined NAM is highly sensitive to Aleutian Low variability, even without modifying the correlation between the Aleutian Low and NAO. Hence, the NAM in models may not be as biased as the traditional method would suggest. We therefore conclude that the traditional EOF method is unsuitable for defining the NAM in the presence of highly amplified Aleutian Low variability, and encourage the use of the zonal‐mean method.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":"20 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large model biases in the Pacific centre of the Northern Annular Mode due to exaggerated variability of the Aleutian Low\",\"authors\":\"Simon H. Lee, Lorenzo M. Polvani\",\"doi\":\"10.1002/qj.4825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Northern Annular Mode (NAM) is traditionally defined as the leading empirical orthogonal function (EOF) of mean sea‐level pressure (MSLP) anomalies during winter. Previous studies have shown that the Pacific centre‐of‐action of the NAM is typically more amplified in models than in reanalysis. Here, we analyse the NAM in hindcasts from nine seasonal prediction models over 1993/1994–2016/2017. In all the models, the Pacific centre‐of‐action is much larger than in reanalysis over that period, during which the NAM and the North Atlantic Oscillation (NAO) are almost indistinguishable. As a result, the NAM in the models is correlated with Aleutian Low variability around four times more strongly than in reanalysis. We show that this discrepancy can be explained primarily by the amplitude of Aleutian Low variability, which is on average 17% higher in models than in reanalysis, with a secondary effect from a stronger correlation between the Aleutian Low and NAO. When the NAM is computed using zonally averaged MSLP, the Aleutian Low amplitude does not influence the pattern directly. Instead, the amplitude of the Pacific centre‐of‐action is governed primarily by the correlation between the Aleutian Low and NAO, reducing the apparent Pacific biases in models. While the two methods yield almost identical results in reanalysis, the large Aleutian Low biases result in differences when applied to model data. Modifying the MSLP statistically to alter the Aleutian Low amplitude reveals that the spatial pattern of the traditionally defined NAM is highly sensitive to Aleutian Low variability, even without modifying the correlation between the Aleutian Low and NAO. Hence, the NAM in models may not be as biased as the traditional method would suggest. We therefore conclude that the traditional EOF method is unsuitable for defining the NAM in the presence of highly amplified Aleutian Low variability, and encourage the use of the zonal‐mean method.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4825\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4825","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
北部环流模式(NAM)传统上被定义为冬季平均海平面气压(MSLP)异常的领先经验正交函数(EOF)。以往的研究表明,与再分析相比,模式中的 NAM 太平洋作用中心通常会被放大。在此,我们分析了 1993/1994-2016/2017 年期间九个季节预测模式的后报中的 NAM。在所有模式中,这一时期的太平洋影响中心比再分析中的影响中心要大得多,在这一时期,NAM 和北大西洋涛动(NAO)几乎没有区别。因此,模式中的 NAM 与阿留申低纬度变率的相关性是再分析的四倍。我们的研究表明,造成这种差异的主要原因是阿留申低纬度变率的振幅,它在模式中比在再分析中平均高出 17%,其次是阿留申低纬度与西北气旋之间更强的相关性。当使用分区平均 MSLP 计算 NAM 时,阿留申低纬度振幅不会直接影响模式。相反,太平洋作用中心的振幅主要受阿留申低压和西北大西洋环流之间的相关性影响,从而减少了模式中明显的太平洋偏差。虽然这两种方法在再分析中得出的结果几乎相同,但在应用于模式数据时,阿留申低纬度的巨大偏差导致了差异。从统计角度修改 MSLP 以改变阿留申低纬度振幅,可以发现传统定义的 NAM 空间模式对阿留申低纬度变率非常敏感,即使不修改阿留申低纬度与 NAO 之间的相关性也是如此。因此,模式中的 NAM 可能并不像传统方法认为的那样有偏差。因此,我们得出结论,在阿留申低纬度变率被高度放大的情况下,传统的 EOF 方法不适合定义 NAM,并鼓励使用 zonal-mean 方法。
Large model biases in the Pacific centre of the Northern Annular Mode due to exaggerated variability of the Aleutian Low
The Northern Annular Mode (NAM) is traditionally defined as the leading empirical orthogonal function (EOF) of mean sea‐level pressure (MSLP) anomalies during winter. Previous studies have shown that the Pacific centre‐of‐action of the NAM is typically more amplified in models than in reanalysis. Here, we analyse the NAM in hindcasts from nine seasonal prediction models over 1993/1994–2016/2017. In all the models, the Pacific centre‐of‐action is much larger than in reanalysis over that period, during which the NAM and the North Atlantic Oscillation (NAO) are almost indistinguishable. As a result, the NAM in the models is correlated with Aleutian Low variability around four times more strongly than in reanalysis. We show that this discrepancy can be explained primarily by the amplitude of Aleutian Low variability, which is on average 17% higher in models than in reanalysis, with a secondary effect from a stronger correlation between the Aleutian Low and NAO. When the NAM is computed using zonally averaged MSLP, the Aleutian Low amplitude does not influence the pattern directly. Instead, the amplitude of the Pacific centre‐of‐action is governed primarily by the correlation between the Aleutian Low and NAO, reducing the apparent Pacific biases in models. While the two methods yield almost identical results in reanalysis, the large Aleutian Low biases result in differences when applied to model data. Modifying the MSLP statistically to alter the Aleutian Low amplitude reveals that the spatial pattern of the traditionally defined NAM is highly sensitive to Aleutian Low variability, even without modifying the correlation between the Aleutian Low and NAO. Hence, the NAM in models may not be as biased as the traditional method would suggest. We therefore conclude that the traditional EOF method is unsuitable for defining the NAM in the presence of highly amplified Aleutian Low variability, and encourage the use of the zonal‐mean method.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.