单平面图形的顶点有性

IF 0.6 4区 数学 Q3 MATHEMATICS
Dongdong Zhang, Juan Liu, Yongjie Li, Hehua Yang
{"title":"单平面图形的顶点有性","authors":"Dongdong Zhang, Juan Liu, Yongjie Li, Hehua Yang","doi":"10.1007/s00373-024-02820-6","DOIUrl":null,"url":null,"abstract":"<p>The vertex arboricity <i>a</i>(<i>G</i>) of a graph <i>G</i> is the minimum number of colors required to color the vertices of <i>G</i> such that no cycle is monochromatic. A graph <i>G</i> is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we proved that every 1-planar graph without 5-cycles has minimum degree at most 5; Every 1-planar graph of girth at least 7 has minimum degree at most 3. The following conclusions can be obtained by combining the existing conclusions and our proofs: if <i>G</i> is a 1-planar graph without 5-cycles, then <span>\\(a(G)\\le 3\\)</span>; if <i>G</i> is a 1-planar graph with <span>\\(g(G)\\ge 7\\)</span>, then <span>\\(a(G)\\le 2\\)</span>.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Vertex Arboricity of 1-Planar Graphs\",\"authors\":\"Dongdong Zhang, Juan Liu, Yongjie Li, Hehua Yang\",\"doi\":\"10.1007/s00373-024-02820-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The vertex arboricity <i>a</i>(<i>G</i>) of a graph <i>G</i> is the minimum number of colors required to color the vertices of <i>G</i> such that no cycle is monochromatic. A graph <i>G</i> is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we proved that every 1-planar graph without 5-cycles has minimum degree at most 5; Every 1-planar graph of girth at least 7 has minimum degree at most 3. The following conclusions can be obtained by combining the existing conclusions and our proofs: if <i>G</i> is a 1-planar graph without 5-cycles, then <span>\\\\(a(G)\\\\le 3\\\\)</span>; if <i>G</i> is a 1-planar graph with <span>\\\\(g(G)\\\\ge 7\\\\)</span>, then <span>\\\\(a(G)\\\\le 2\\\\)</span>.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02820-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02820-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的顶点可着色性 a(G) 是指给图 G 的顶点着色时所需的最少颜色数,这样就不会出现单色循环。如果一个图 G 可以在平面上绘制,且每条边最多有一个交叉点,那么它就是 1-平面图。结合已有的结论和我们的证明,可以得到以下结论:如果 G 是一个没有 5 个循环的 1-planar 图,则 \(a(G)\le 3\); 如果 G 是一个有 \(g(G)\ge 7\) 的 1-planar 图,则 \(a(G)\le 2\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Vertex Arboricity of 1-Planar Graphs

The Vertex Arboricity of 1-Planar Graphs

The vertex arboricity a(G) of a graph G is the minimum number of colors required to color the vertices of G such that no cycle is monochromatic. A graph G is 1-planar if it can be drawn in the plane so that each edge has at most one crossing. In this paper, we proved that every 1-planar graph without 5-cycles has minimum degree at most 5; Every 1-planar graph of girth at least 7 has minimum degree at most 3. The following conclusions can be obtained by combining the existing conclusions and our proofs: if G is a 1-planar graph without 5-cycles, then \(a(G)\le 3\); if G is a 1-planar graph with \(g(G)\ge 7\), then \(a(G)\le 2\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信