连续实值函数巴拿赫空间正锥之间的相位等分线

IF 1.2 3区 数学 Q1 MATHEMATICS
Daisuke Hirota, Izuho Matsuzaki, Takeshi Miura
{"title":"连续实值函数巴拿赫空间正锥之间的相位等分线","authors":"Daisuke Hirota,&nbsp;Izuho Matsuzaki,&nbsp;Takeshi Miura","doi":"10.1007/s43034-024-00378-1","DOIUrl":null,"url":null,"abstract":"<div><p>For a locally compact Hausdorff space <i>L</i>, we denote by <span>\\(C_0(L,{\\mathbb {R}})\\)</span> the Banach space of all continuous real-valued functions on <i>L</i> vanishing at infinity equipped with the supremum norm. We prove that every surjective phase-isometry <span>\\(T:C_0^+(X,{\\mathbb {R}})\\rightarrow C_0^+(Y,{\\mathbb {R}})\\)</span> between the positive cones of <span>\\(C_0(X,{\\mathbb {R}})\\)</span> and <span>\\(C_0(Y,{\\mathbb {R}})\\)</span> is a composition operator induced by a homeomorphism between <i>X</i> and <i>Y</i>. Furthermore, we show that any surjective phase-isometry <span>\\(T:C_0^+(X,{\\mathbb {R}})\\rightarrow C_0^+(Y,{\\mathbb {R}})\\)</span> extends to a surjective linear isometry from <span>\\(C_0(X,{\\mathbb {R}})\\)</span> onto <span>\\(C_0(Y,{\\mathbb {R}})\\)</span>.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase-isometries between the positive cones of the Banach space of continuous real-valued functions\",\"authors\":\"Daisuke Hirota,&nbsp;Izuho Matsuzaki,&nbsp;Takeshi Miura\",\"doi\":\"10.1007/s43034-024-00378-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For a locally compact Hausdorff space <i>L</i>, we denote by <span>\\\\(C_0(L,{\\\\mathbb {R}})\\\\)</span> the Banach space of all continuous real-valued functions on <i>L</i> vanishing at infinity equipped with the supremum norm. We prove that every surjective phase-isometry <span>\\\\(T:C_0^+(X,{\\\\mathbb {R}})\\\\rightarrow C_0^+(Y,{\\\\mathbb {R}})\\\\)</span> between the positive cones of <span>\\\\(C_0(X,{\\\\mathbb {R}})\\\\)</span> and <span>\\\\(C_0(Y,{\\\\mathbb {R}})\\\\)</span> is a composition operator induced by a homeomorphism between <i>X</i> and <i>Y</i>. Furthermore, we show that any surjective phase-isometry <span>\\\\(T:C_0^+(X,{\\\\mathbb {R}})\\\\rightarrow C_0^+(Y,{\\\\mathbb {R}})\\\\)</span> extends to a surjective linear isometry from <span>\\\\(C_0(X,{\\\\mathbb {R}})\\\\)</span> onto <span>\\\\(C_0(Y,{\\\\mathbb {R}})\\\\)</span>.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00378-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00378-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于局部紧凑的 Hausdorff 空间 L,我们用 C_0(L,{/\mathbb {R}})表示 L 上所有在无穷处消失的连续实值函数的巴纳赫空间(Banach space of all continuous real-valued functions on L vanishing at infinity equipped with the supremum norm)。我们证明了在\(C_0(X,{/mathbb {R}})\)和\(C_0(Y,{/mathbb {R}})\)的正锥间的每一个投射相异度(T:C_0^+(X,{/mathbb {R}})\rightarrow C_0^+(Y,{/mathbb {R}}))都是由 X 和 Y 之间的同构所诱导的组成算子。此外,我们还证明了任何从 \(C_0(X,{\mathbb {R}})\rightarrow C_0^+(Y,{\mathbb {R}}) 扩展到 \(C_0(X,{\mathbb {R}})\ 上的\(C_0(Y,{/mathbb {R}}))的投射相等性。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase-isometries between the positive cones of the Banach space of continuous real-valued functions

For a locally compact Hausdorff space L, we denote by \(C_0(L,{\mathbb {R}})\) the Banach space of all continuous real-valued functions on L vanishing at infinity equipped with the supremum norm. We prove that every surjective phase-isometry \(T:C_0^+(X,{\mathbb {R}})\rightarrow C_0^+(Y,{\mathbb {R}})\) between the positive cones of \(C_0(X,{\mathbb {R}})\) and \(C_0(Y,{\mathbb {R}})\) is a composition operator induced by a homeomorphism between X and Y. Furthermore, we show that any surjective phase-isometry \(T:C_0^+(X,{\mathbb {R}})\rightarrow C_0^+(Y,{\mathbb {R}})\) extends to a surjective linear isometry from \(C_0(X,{\mathbb {R}})\) onto \(C_0(Y,{\mathbb {R}})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信